Skip to main content
Log in

Improved and Automated Primary Ultrasonic Power Measurement Setup at CSIR-NPL, India

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Ultrasonic power generated by an ultrasonic transducer must be measured and declared for the ultimate safety of patients. According to IEC-61161 radiation force balance is internationally recommended primary method for measurement of total, time averaged ultrasonic power radiated by transducer. In a manual RFB system, the output of microbalance is recorded manually at no radiation force and after transducer excitation. Manual technique suffers from various errors, such as overshoot due to momentum of target, disturbance due to small tilt in target and buoyancy change of target. The developed automated system provides scope to visualize these effects and enables us to considerably reduce effects of above sources and hence improves uncertainty. In this article developmental details and the functionality of an improved automated system is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. For HAM-A datasheet, Precision acoustics, see www.acoustics.co.uk.

  2. See for Mettler—XP56 microbalance details, www.mt.com.

  3. For laser displacement sensor, Panasonic model: HL-G112-A, www.clrwtr.com.

  4. See for Fluke multimeter model 8846A, www.fluke.com.

References

  1. K.G. Lewis Jr. and W.L. Olbricht, Development of a portable therapeutic and high intensity ultrasound system for military medical and research use, Rev. Sci. Instrum., 79 (2008) 114302.

    Article  ADS  Google Scholar 

  2. K.M. Swamy and F. J. Keil, Ultrasonic power measurement in milliwatt region by the radiation force float method, Ultrason. Sonochem., 9 (2002) 305–310.

    Article  Google Scholar 

  3. D. Joshi, A. Kumar, R. Gupta and S. Yadav, Sensitivity enhancement of concurrent technique of acoustic impedance measurement, MAPAN-J. Metrol. Soc. India, 28 (2013) 79–83.

    Google Scholar 

  4. S. Rajagopal and A. Shaw, The buoyancy method—a potential new primary ultrasound power standard, Merologia 49 (2012) 327–339.

    Article  ADS  Google Scholar 

  5. P.K. Dubey, Y. Kumar, R. Gupta, A. Jain and C. Gohiya, Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target, Rev. Sci. Instrum., 85 (2014) 054905.

    Article  ADS  Google Scholar 

  6. D. Joshi, R. Gupta, A. Kumar, Y. Kumar and S. Yadav, A precision ultrasonic phase velocity measurement technique for liquids, MAPAN-J. Metrol. Soc. India, 29 (2014) 09–17.

    Google Scholar 

  7. D. Joshi, D. Bhatnagar, A. Kumar, and R. Gupta, Direct measurement of acoustic impedance in liquids by a new pulse echo technique, MAPAN-J. Metrol. Soc. India, 24 (2010) 215–224.

    Google Scholar 

  8. P.K. Dubey, S. Rajagopalan, V.R. Vyaghra, V.M. Pendsey and S.J. Sharma, High resolution ultrasonic attenuation measurement in pulse-echo setup, MAPAN-J. Metrol. Soc. India, 23 (2008) 245–252.

    Google Scholar 

  9. S. Rajagopalan, S.J. Sharma and P.K. Dubey, Measurement of ultrasonic velocity with improved accuracy in pulse-echo setup, Rev. Sci. Instrum., 78 (2007) 085104.

    Article  ADS  Google Scholar 

  10. IEC 60601-1-6, General requirements for basic safety and essential performance—collateral standard: usability, International Electrotechnical Commission (2010).

  11. J.-F. Aubry, High intensity therapeutic ultrasound: metrological requirements versus clinical usage, Metrologia, 49 (2012) S259–S266.

    Article  ADS  Google Scholar 

  12. J. Bercoff, M. Tanter and M. Fink, Supersonic shear imaging: a new technique for soft tissue elasticity mapping, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51 (2004) 396–409.

    Article  Google Scholar 

  13. IEC Standard 61161, Ultrasonics-power measurement—radiation force balances and performance requirements, International Electrotechnical Commission, Geneva (2006).

    Google Scholar 

  14. T. Kikuchi and T. Uchida, Calorimetric method for measuring high ultrasonic power using water as a heating medium, J. Phys., 279 (2011) 012012.

    Google Scholar 

  15. P.K Dubey, A. Kumar, Y. Kumar, R. Gupta and D. Joshi, Primary measurement of total ultrasonic power with improved accuracy in RF voltage measurement, Rev. Sci. Instrum., 81 (2010) 104904.

    Article  ADS  Google Scholar 

  16. R.P.B. Costa-Felix, A.V. Alvarenga and R. Hekkengerg, A fully automated system for ultrasonic power measurementand simulation according to IEC 61161:2006, J. Phys., 279 (2011) 012004.

    Google Scholar 

  17. T. Kikuchi, S. Sato and M. Yoshika, Quantitative estimation of acoustic streaming effects on ultrasonic power measurement, IEEE Trans. Ultrason. Ferroelectr. Freq. Control Joint 50th Anniv. Conf., 3 (2004) 2197–2200.

    Google Scholar 

  18. R.C. Preston and A.J. Livett, Medical ultrasonic standards at NPL, IEE Proc. 131 (1984) 233–240.

  19. M.A. Perkins, Aversatile force balance for ultrasound power measurement, Phys. Med. Biol. 34 (1989) 1645–1651.

    Article  MathSciNet  Google Scholar 

  20. K. Beissner, Minimum target size in radiation force balance, J. Acoust. Soc. Am. 76 (1984) 1505–1511.

    Article  ADS  Google Scholar 

  21. S.E. Fick, Long-term stability of the NIST standard ultrasonic source, J. Res. Nat. Inst. Stand. Technol., 113 (2008) 281–286.

    Article  Google Scholar 

  22. National Physical Laboratory, Kaye and Laby tables of physical and chemical constants (2005).

Download references

Acknowledgments

The authors (particularly P. K. Dubey) would like to thank the Director, CSIR-National Physical Laboratory, for providing the necessary facilities and financial assistance for the improvement in the primary ultrasonic power measurement system. Thanks are also due for the financial support provided to one of the authors (Shashank Singh) under CSIR research intern scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Dubey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, P.K., Jain, A. & Singh, S. Improved and Automated Primary Ultrasonic Power Measurement Setup at CSIR-NPL, India. MAPAN 30, 231–237 (2015). https://doi.org/10.1007/s12647-015-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-015-0150-4

Keywords

Navigation