Skip to main content
Log in

Experimental Setup and Standardization of a Continuous Flow Stable Isotope Mass Spectrometer for Measuring Stable Isotopes of Carbon, Nitrogen and Sulfur in Environmental Samples

  • Short Communication
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

We present here the experimental setup and standardization of a newly acquired stable isotope ratio mass-spectrometer (Isoprime 100, Isoprime® UK) coupled with elemental analyzer (Pyrocube, Elementar®-Germany) in a continuous flow mode, for the measurements of C, N and S isotopes in a variety of natural as well as synthetic organics and sulfur containing solid samples. We have calibrated our instrument using a suite of certified international standards supplied by International Atomic Energy Agency Vienna and cross-checked against several in-house laboratory standards used by other institutions of international repute. A synthetic organic compound Sulfanilamide was continuously used along with international standards to develop an in-house internal laboratory standard for the accurate and precise isotopic measurements. Important components contributing to the overall uncertainty of the isotopic measurements such as blank contributions, amount effect and response of mass-spectrometric current against thermal conductivity detector were performed using several aliquots of ε-Amino-n-caproic acid and sulfanilamide (in-house) standards. Both short and long term variabilities in the measure isotopic data were assessed using our in-house laboratory standard Sulfanilamide. Overall estimated uncertainties of C, N and S isotopic measurements are better than 0.2, 0.2 and 0.3 ‰, respectively; which are well within the recommended limits of aforementioned isotopic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. M.V.S.N. Prasad, C. Sharma, B.C. Arya, T.K. Mandal, S. Singh, M.J. Kulshrestha, R. Agnihotri, S.K. Mishra, S.K. Sharma, Experimental facilities to monitor various types of atmospheric parameters in the Radio and Atmospheric Sciences Division (RASD) of CSIR-National Physical Laboratory, MAPAN-J. Metrol. Soc. India, 28(3) (2013) 193–203, doi: 10.1007/s12647-013-0067-8.

  2. S. Doney, N. Mahowald, I. Lima R. Feeley and F. Mackenzie, Impact of anthropogenic atmospheric nitrogen and sulfur deposition ocean acidification and the inorganic carbon system, Proc. Natl. Acad. Sci., (2007) doi:10.1073/pnas.0702218104.

    Google Scholar 

  3. R.A. Duce et al., Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320 (2008) 893–897, doi:10.1126/science.115036.

  4. J. Galloway, A. Townsend, J. Erisman, M. Bekunda and Z. Cai et al., Transformation of the nitrogen cycle: recent trends, questions and potential solutions, Science, 320 (2008) 889–92.

    Article  ADS  Google Scholar 

  5. B. Srinivas, M.M. Sarin, and V.V.S.S. Sarma, Atmospheric dry deposition of inorganic and organic nitrogen to the Bay of Bengal: impact of continental outflow, Mar. Chem., 127 (2011) 170–179.

    Article  Google Scholar 

  6. M.A. Altabet, M.J. Higginson, and D W. Murray, The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2, Nature, 415 (2002) 159–162.

    Article  ADS  Google Scholar 

  7. M.A. Altabet, Isotopic tracers of the marine nitrogen cycle, In: Marine organic matter: chemical and biological markers edited by J. Volkman, vol. 2 of “The Handbook of Environmental Chemistry”, Editor-in-Chief: O. Hutzinger, (2005), doi:10.1007/698_2_008.

  8. R. Agnihotri, S.K. Bhattacharya, M.M. Sarin and B.L.K. Somayajulu. Changes in surface productivity, sub-surface denitrification and SW monsoon during the Holocene: a multi proxy record from the eastern Arabian Sea, The Holocene, 13 (2003), 701–713.

    Article  Google Scholar 

  9. R. Agnihotri, Mark A. Altabet, and T.D. Herbert, Influence of marine denitrification on atmospheric N2O variability during the Holocene, Geophy. Res. Lett., 33 (2006) L13704, doi: 10.1029/2006GL025864.

    Article  ADS  Google Scholar 

  10. R. Agnihotri, S. Kurian, M. Fernandes, K. Reshma, W.D’ Souza, S.W.A. Naqvi, Variability of subsurface denitrification and surface productivity in the coastal eastern Arabian Sea over the past seven centuries, The Holocene, 18(5) (2008a) 755–764, IF: 2.481.

  11. R. Agnihotri, M.A. Altabet, T.D. Herbert, J.E. Tierney, Ultra high-resolution paleoceanography of the Peru margin during the last two millennia, Geophys. Geochem. Geosyst., 9 (2008b) Q05013, doi:10.1029/2007GC001744, IF: 2.979.

    Article  ADS  Google Scholar 

  12. O. Hadas, M.A. Altabet, R. Agnihotri, Seasonally varying N isotope biogeochemistry in Lake Kinneret, Israel, Limnology. Oceanography, 54 (2009) 75–85.

    Google Scholar 

  13. R. Agnihotri, T.K. Mandal, S. Karapurkar, M. Naja, R. Gadi, Y.N. Ahammed, A. Kumar, T. Saud, and M. Saxena, Stable carbon and nitrogen isotopic composition of bulk aerosols over India and Northern Indian Ocean, Atmospheric Environ., 45 (2011) 2828–2835.

    Article  ADS  Google Scholar 

  14. C.M. Pavuluri, K. Kawamura, T. Swaminathan, and E. Tachibana, Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols, J. Geophys. Res., 116 (2011) D18307, doi:10.1029/2011JD015617.

  15. C.M. Pavuluri, K. Kawamura, E. Tachibana, and T. Swaminathan, Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmospheric Environ., 44 (2010) 3597–3604.

    Article  ADS  Google Scholar 

  16. S.G. Aggrawal, K. Kawamura, G.S. Umarji, E. Tachibana, R.S. Patil and P.K. Gupta, Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: sources of organic aerosols and atmospheric processing, Atmospheric Chem. Phys., 13 (2013) 4667–4680.

    Article  ADS  Google Scholar 

  17. T. Hansen et al., Simultaneous δ15N, δ13C and δ34S measurements of low biomass samples using a technically advanced high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer, Rapid Commun. Mass Spectrom., 23 (2009) 2521–2527.

    Article  Google Scholar 

  18. A.L. Norman, L.A. Barrie, D. Toom-Sauntry, A. Sirois, H.R. Krouse, S.M. Li, and S. Sharma, Sources of aerosol sulphate at Alert: Apportionment using stable isotopes, J. Geophys. Res., 104 (D9) (1999) 11619–11631, doi:10.1029/1999JD900078.

    Article  ADS  Google Scholar 

  19. R. Bhushan, K. Dutta, and B L.K. Somayajulu, Concentrations and burial fluxes of organic and inorganic carbon on the eastern margins of the Arabian Sea, Mar. Geol. 178 (2001), 95–11.

    Article  Google Scholar 

  20. S.G. Aggarwal, Recent developments in aerosol measurements techniques and the metrological issue, MAPAN-J. Metrol. Soc. India, 25(3) (2010) 165–189.

    Google Scholar 

  21. S.G. Karapurkar, A. Methar, and R. Agnihotri, Measurement of C and N isotopes of geological samples using Delta V Plus Stable Isotope Ratio Mass Spectrometer via different preparatory systems. Technical report published by National Institute of Oceanography, NIO/TR-02, (2008).

  22. H. Avak and B. Fry, EA-IRMS: Precise and Accurate Measurement of d15 N on <10 μg N, Application Flash Report No. G 29 (1999).

  23. B. Fry, Coupled N, C and S isotopic measurements using a dual column gas chromatography system. Rapid Commun. Mass Spectrom., 21 (2007), 750–756, doi: 10.1002/rcm.2892.

    Article  Google Scholar 

  24. A.C. Llyod and G. Bansal, Emissions from transportation and fuels: the importance of initial and real world measurements for policy making in India, MAPAN-J. Metrol. Soc. India, 28(3) (2013) 227–234, doi: 10.1007/s12647-013-0065-x.

    Google Scholar 

  25. M. Ferm, J. Watt, S. O’hanlon, F. De Santis, and C. Varotsos. Deposition measurement of particulate matter in connection with corrosion studies, Anal. Bioanal. Chem., 384 (2006) 1320–1330.

    Article  Google Scholar 

  26. M. Ferm, F. De Santis and C. Varotsos, Nitric acid measurements in connection with corrosion studies, Atmospheric Environ., 39 (2005) 6664–6672.

Download references

Acknowledgments

Authors are thankful to Prof. R.C. Budhani, Director NPL for his keen interest and encouragement in the above work. The work reported in the paper is a part of project sanctioned by the CSIR under its XII 5 Year Plan network project ‘AIM_IGPHim (PSC-0112)’. Authors do acknowledge the support and technical help provided by Mr. Gaurav Kothiyal, Mr. Rob Estbury and Mr. Mike Seed (from Isoprime India and UK) during installation and thereafter. We also thank Prof. Mark Altabet (University of Massachusetts, Dartmouth USA) and Dr. VVSS Sarma for kindly providing their reference CN isotopic standards for calibration purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Agnihotri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnihotri, R., Kumar, R., Prasad, M.V.S.N. et al. Experimental Setup and Standardization of a Continuous Flow Stable Isotope Mass Spectrometer for Measuring Stable Isotopes of Carbon, Nitrogen and Sulfur in Environmental Samples. MAPAN 29, 195–205 (2014). https://doi.org/10.1007/s12647-014-0099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-014-0099-8

Keywords

Navigation