Skip to main content
Log in

Cryogenic Current Comparators for the Realisation of Electrical Quantum Standards

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The cryogenic current comparator has played a central role in the realisation of electrical quantum standards over the last 40 years. It is the method of choice for National Measurement Laboratories in realising a quantum Hall effect primary standard of resistance. Single electron transport devices are expected to provide a primary standard of current within the next few years and this paper considers how they will be integrated into electrical metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I.K. Harvey, A precise low temperature dc ratio transformer, Rev. Sci. Instrum., 43(11) (1972) 1626–1629.

    Article  Google Scholar 

  2. J. Gallop, The quantum electrical triangle, Philos. Trans. R. Soc. A, 363 (2005) 2221–2247.

    Article  ADS  MathSciNet  Google Scholar 

  3. J.M. Williams, Cryogenic current comparators and their application to electrical metrology, IET Sci. Meas. Technol., 5(6) (2011) 211–224.

    Article  Google Scholar 

  4. I.K. Harvey, Cryogenic ac Josephson effect emf standard using a superconducting current comparator, Metrologia, 12 (1976) 47–54.

    Article  ADS  Google Scholar 

  5. K. Von Klitzing, G. Dorda and M. Pepper, New method for high accuracy determination of the fine structure constant based on quantized Hall resistance, Phys. Rev. Lett., 45 (1980) 494–497.

    Article  ADS  Google Scholar 

  6. A. Hartland, G.J. Davies and D.R. Wood, A measurement system for the determination of h/e 2 in terms of the SI Ohm and the maintained Ohm at the NPL, IEEE Trans. Instrum. Meas., IM-34(2) (1985) 309–314.

    Article  Google Scholar 

  7. A. Hartland, R.G. Jones, B.P. Kibble and J. Legg, The relationship between the SI Ohm, the Ohm at NPL, and the quantized Hall resistance, IEEE Trans. Instrum. Meas., IM-36(2) (1987) 208–213.

    Article  Google Scholar 

  8. F. Delahaye, A. Fau, D. Dominguez and M. Bellon, IEEE Trans. Instrum. Meas., IM-36(2) (1987) 205–207.

    Article  ADS  Google Scholar 

  9. W. van der Wel, J.E. Mooij, C.J.P.M. Harmans, J.P. Andre, G. Weimann, K. Ploog, C.T. Foxon and J.J. Harris, A resistance ratio bridge based on a cryogenic current comparator for measuring the quantized Hall resistance, IEEE Trans. Instrum. Meas., 38(1) (1989) 54–58.

    Article  Google Scholar 

  10. A. Hartland, The quantum Hall effect and resistance standards, Metrologia, 29 (1992) 175–190.

    Article  ADS  Google Scholar 

  11. F. Delahaye, A. Satrapinsky and T.J. Witt, Recent determinations of R H in terms of \(\Upomega_{{\rm 69-BI}}\), IEEE Trans. Instrum. Meas., 38(2) (1989) 256–259.

    Article  Google Scholar 

  12. T.J. Witt, F. Delahaye and D. Bournaud, The 1987 international comparison of \(1-\Upomega\) resistance standards at the BIPM and the resulting agreement among determinations of R H, IEEE Trans. Instrum. Meas., 38(2) (1989) 279–283.

    Article  Google Scholar 

  13. B.V. Hamon (1954) A 1–100 \(\Upomega\) build-up resistor for the calibration of standard resistors, J. Sci. Instrum., 31 (1954) 450.

    Article  ADS  Google Scholar 

  14. M.E. Cage, R.F. Dziuba, C.T. van Degrift and D. Yu, Determination of the time-dependence of \(\Upomega_{\rm NBS}\) using the quantized Hall resistance, IEEE Trans. Instrum. Meas., 38(2) (1989) 263–269.

    Article  Google Scholar 

  15. K. Shida, T. Wada, H. Nishinaka, K. Segawa and T. Igarashi, SI value of quantized Hall resistance based on ETL’s calculable capacitor, IEEE Trans. Instrum. Meas., 38(2) (1989) 252–255.

    Article  Google Scholar 

  16. B.N. Taylor and T.J. Witt, New international electrical reference standards based on the Josephson and quantum Hall effects, Metrologia, 26 (1989) 47–62.

    Article  ADS  Google Scholar 

  17. A.D. Inglis and B.M. Wood, The Canadian realization of a quantized hall resistance standard, IEEE Trans. Instrum. Meas., 42(2) (1993) 144–147.

    Article  Google Scholar 

  18. B. Jeckelmann, W. Fasel and B. Jeanneret, Improvements in the realization of the quantized Hall resistance standard at OFMET, IEEE Trans. Instrum. Meas., 44(2) (1995) 265–268.

    Article  Google Scholar 

  19. G. Boella, I. Mihai, G. Marullo-Reedtz, P.P. Capra and E. Gasparotto, The IEN CCC bridge to scale the quantized Hall resistance to 1 \(\Upomega\) standards, IEEE Trans. Instrum. Meas., 54(2) (2005) 588-–591.

    Article  Google Scholar 

  20. T.J. Witt, Electrical resistance standards and the quantum Hall effect, Rev. Sci. Instrum., 69(8) (1998) 2823–2843.

    Article  ADS  Google Scholar 

  21. B. Jeckelmann and B. Jeanneret, The quantum hall effect as an electrical resistance standard, Rep. Prog. Phys., 64 (2001) 1603–1655.

    Article  ADS  Google Scholar 

  22. F. Delahaye, D. Bournaud and T.J. Witt, Report on the 1990 international comparison of 1 \(\Upomega\) and 10 \({\rm k}\Upomega\) resistance standards at the BIPM, Metrologia, 29 (1992) 273–283.

    Article  ADS  Google Scholar 

  23. F. Delahaye, T.J. Witt, F. Piquemal and G. Geneves, Comparison of quantum Hall effect resistance standards of the BNM/LCIE and the BIPM, IEEE Trans. Instrum. Meas., 44(2) (1995) 258–261.

    Article  Google Scholar 

  24. F. Delahaye, T.J. Witt, B. Jeckelmann and B. Jeanneret, Comparison of quantum Hall effect resistance standards of the OFMET and the BIPM, Metrologia, 32 (1995) 385–388.

    Article  ADS  Google Scholar 

  25. M. Gtz, D. Drung, E. Pesel, H.-J. Barthelmess, C. Hinnrichs, C. Amann, M. Peters, H. Scherer, B. Schumacher and T. Schurig, Improved cryogenic current comparator setup with digital current sources, IEEE Trans. Instrum. Meas., 58(4) (2009) 1176–1182.

    Article  Google Scholar 

  26. J.M. Williams, T.J.B.M. Janssen, G. Rietveld and E. Houtzager, An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements, Metrologia, 47 (2010) 167–174.

    Article  ADS  Google Scholar 

  27. A. Hartland, K. Jones, J.M. Williams, B.L. Gallagher and T. Galloway, Direct comparison of the quantized Hall resistance in gallium-arsenide and silicon, Phys. Rev. Lett., 66(8) (1991) 969–973.

    Article  ADS  Google Scholar 

  28. K.S. Novoselov, A.K.Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197–200.

    Article  ADS  Google Scholar 

  29. Y.B. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berrys phase in graphene, Nature, 438 (2005) 201–204.

    Article  ADS  Google Scholar 

  30. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81(1) (2009) 109–162.

    Google Scholar 

  31. A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syvajarvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, V. Falko and S. Kubatkin, Towards a quantum resistance standard based on epitaxial graphene, Nat. Nanotechnol., 5 (2010) 186–189.

    Article  ADS  Google Scholar 

  32. T.J.B.M. Janssen, J.M. Williams, N.E. Fletcher, R. Goebel, A. Tzalenchuk, R. Yakimova, S. Lara-Avila, S. Kubatkin and V.I. Falko, Precision comparison of the quantum Hall effect in graphene and gallium arsenide, Metrologia, 49 (2012) 294–306.

    Article  ADS  Google Scholar 

  33. F. Piquemal and G. Geneves, An argument for a direct realization of the quantum metrological triangle, Metrologia, 37 (2000) 207–211

    Article  ADS  Google Scholar 

  34. M.D. Blumenthal, B. Kaestner, L. Li, S. Giblin, T.J.B.M. Janssen, M. Pepper, D. Andeerson, G. Jones and D.A. Ritchie, Gigahertz quantized charge pumping, Nat. Phys., 3 (2007) 343–347.

    Google Scholar 

  35. S.P. Giblin, M. Kataoka, J.D. Fletcher, P. See, T.J.B.M. Janssen, J.P. Griffiths, G.A.C. Jones, I. Farrer and D.A. Ritchie, Single electron pumps: towards a quantum representation of the ampere arXiv 1201.2533, (2012).

  36. F. Gay, F. Piquemal and G. Geneves, Ultralow noise current amplifier based on a cryogenic current comparator, Rev. Sci. Instrum., 71(12) (2000) 4592–4595.

    Article  ADS  Google Scholar 

  37. G. Rietveld, E. Bartolom, J. Ses, P. de la Court, J. Flokstra, C. Rillo and A. Camn, 1:30,000 cryogenic current comparator with optimum SQUID readout, IEEE Trans. Instrum. Meas., 52(2) (2003) 621–625.

    Article  Google Scholar 

  38. R.E. Elmquist, E. Hourdakis, D.G. Jarrett and N.M. Zimmerman, Direct resistance comparisons from the QHR to 100 \(\hbox{M}\Upomega\) using a cryogenic current comparator, IEEE Trans. Instrum. Meas., 54(2) (2005) 525–528.

    Article  Google Scholar 

  39. T.J.B.M. Janssen and A. Hartland, Accurate measurement of currents generated by single electrons transported in a one-dimensional channel, IEE Proc. Sci. Meas. Technol., 147(4) (2000) 174–176.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the UK National Measurement System Physical Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J.M. Cryogenic Current Comparators for the Realisation of Electrical Quantum Standards. MAPAN 28, 335–340 (2013). https://doi.org/10.1007/s12647-013-0087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-013-0087-4

Keywords

Navigation