Skip to main content
Log in

Atomic Force Microscopy as a Nanometrology Tool: Some Issues and Future Targets

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Diverse novel nanomaterials are being developed for a wide range of applications nowadays. Atomic force microscopy (AFM) assumes specific importance for the measurement of size and other related properties for such nanomaterials. The different aspects related to AFM modes of operation, nanopositioning, sensing systems as well as calibration for reliable characterization in order to meet the nanometrology requirements are discussed. The future targets in this context, set by nanometrology institutes, are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G. Binnig, H. Rohrer, C. Gerber and E. Weibel, Surface studies by scanning tunnelling microscopy, Phys. Rev. Lett., 49 (1982) 57–61.

    Article  ADS  Google Scholar 

  2. G. Binnig, C.F. Quate and C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56 (1986) 930–933.

    Google Scholar 

  3. F.J. Giessibl, Atomic force microscopy in ultrahigh vacuum, Jpn. J. Appl. Phys., 33 (1994) 3726–3734.

    Article  ADS  Google Scholar 

  4. F.J. Giessibl, Advances in atomic force microscopy, Rev. Mod. Phys., 75 (2003) 949–983.

    Article  ADS  Google Scholar 

  5. Y. Song, A.F. Otte, V. Shvarts, Z. Zhao, Y. Kuk, S.R. Blankenship, A. Band, F.M. Hess and J.A. Stroscio, Invited review article: a 10 mK scanning probe microscopy facility, Rev. Sci. Instrum., 81 (2011) 121101.

    Article  ADS  Google Scholar 

  6. M.R. Koblischka, U. Hartmann, Recent advances in magnetic force microscopy, Ultramicroscopy, 97 (2003) 103–112.

    Article  Google Scholar 

  7. W. Melitz, J. Shena, A.C. Kummela and S. Lee, Kelvin probe force microscopy and its application, Surf. Sci. Rep., 66 (2011) 1–27.

    Article  ADS  Google Scholar 

  8. R. Garcia, R.V. Martinez and J. Martinez, Nano-chemistry and scanning probe nanolithographies, Chem. Soc. Rev., 35 (2006) 29–38.

    Article  Google Scholar 

  9. R.D. Piner, J. Zhu, F. Xu, S. Hong and C.A. Mirkin, Science, 283 (1999) 661–663.

    Article  Google Scholar 

  10. X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact., 48 (2002) 11–36.

    Article  Google Scholar 

  11. O. Jusko, X. Zhao, H. Wolff and G. Wilkening, Design and three dimensional calibration of a measuring scanning tunneling microscope for metrological applications, Rev. Sci. Instrum., 65 (1994) 2514–2518.

    Article  ADS  Google Scholar 

  12. V. Korpelainen, J. Seppä and A. Lassila, Design and characterization of MIKES metrological atomic force microscope, Precis. Eng., 34 (2010) 735–744.

    Article  Google Scholar 

  13. P. Klapetek, M. Valtr and M. Matula, Long range scanning probe microscope for automotive reflector optical quality inspection, Meas. Sci. Technol., 22 (2011) 094011.

    Article  ADS  Google Scholar 

  14. A. Yacoot and L. Koenders, Aspects of scanning force microscope probes and their effects on dimensional measurement, J. Phys. D: Appl. Phys., 41 (2008) 103001–103046.

    Article  ADS  Google Scholar 

  15. R. García and R. Pérez, Dynamic atomic force microscopy methods, Surf. Sci. Rep., 47 (2002) 197–301.

    Article  MATH  Google Scholar 

  16. F. Ohnesorge and G. Binnig, True atomic resolution by atomic force miscroscopy through repulsive and attractive forces, Science, 260 (1993) 1451–1456.

    Article  ADS  Google Scholar 

  17. T. Kizuka and K. Hosoki, In situ high-resolution transmission electron microscopy of direct bonding processes between silicon tips with oxide surface at room temperature, Appl. Phys. Lett., 75 (1999) 2743–2745.

    Article  ADS  Google Scholar 

  18. S. Kasas, G. Longo and G. Dietler, Mechanical properties of biological specimens explored by atomic force microscopy, J. Phys. D, 46 (2013) 133001–133013.

    Article  ADS  Google Scholar 

  19. Z.L. Zhou, A.H.W. Ngan, B. Tang and A.X. Wang, Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope, J. Mech. Behav. Biomed. Mater., 8 (2012) 134–142.

    Article  Google Scholar 

  20. J.E. Griffith, Dimensional metrology with scanning probe microscopes, J. Appl. Phys., 74 (1993) R83–R10.

    Article  ADS  Google Scholar 

  21. E. Manske, G. Jäger, T. Hausotte and R. Fübl, Recent developments and challenges of nanopositioning and nanomeasuring technology, Meas. Sci. Technol., 23 (2012) 74001–74010.

    Article  ADS  Google Scholar 

  22. X. Hu, C.J. Tourek, Z. Ye, S. Sundararajan and A. Martini, Structural and chemical evolution of the near-apex region of an atomic force microscope tip subject to sliding, Tribol. Lett. DOI 10.1007/s11249-013-0255-2, 2013.

  23. M.-S. Kim, J.-H. Choi, J.-H. Kim and Y.-K. Park, Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods, Measurement, 43 (2010) 520–526.

    Article  Google Scholar 

  24. F. Zenhausern, M. Adrian, B.T. Heggler-Bordied, L.M. Eng and P.D. Descouts, DNA and RNA-polymerase DNA complex imaged by scanning force microscopy—influence of molecular-scale friction, Scanning, 14 (1992) 212–217.

    Article  Google Scholar 

  25. V.J. García, L. Martinez, J.M. Briceno-Valeron and C.H. Schilling, Dimensional metrology of nanometric spherical particles using AFM: II, Probe Microsc., 1 (1998) 117–125.

    Google Scholar 

  26. Y. Wang and X. Chen, Carbon nanotubes: a promising start for quantitative evaluation of AFM tip apex geometry, Ultramicroscopy, 107 (2007) 293–298.

    Article  Google Scholar 

  27. J.S. Villarrubia, Algorithms for scanned probe microscope image simulation, surface reconstruction and tip estimation, J. Res. Natl. Inst. Stand. Technol., 102 (1997) 245–254.

    Article  Google Scholar 

  28. D. Tranchida, S. Piccarlo and R.A.C. Deblieck, Some experimental issues of AFM tip blind estimation: the effects of noise and resolution, Meas. Sci. Technol., 17 (2006) 2630–2636.

    Article  ADS  Google Scholar 

  29. C.A.J. Putman, B.G. de Grooth, N. van Hulst and G.J. Greve, A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM, Ultramicroscopy, 4244 (1992) 1509–1513.

    Article  Google Scholar 

  30. T. Fukuma, M. Kimura, K. Kobayashi, M. Kazumi and H. Yamadaa Development of low noise cantilever deflection sensor for multi environment frequency-modulation atomic force microscopy, Rev. Sci. Instrum., 76 (2005) 53704–53711.

    Article  ADS  Google Scholar 

  31. M. Tortonese, R.C. Barrett and C.F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Appl. Phys. Lett., 62 (1993) 834–836.

    Article  ADS  Google Scholar 

  32. J.A. Harley, Ph.D. Thesis, Advances in piezoresistive probes for atomic force microscopy, (Guided by C.F. Quate), Stanford Univ, Mar (2000).

  33. G.E. Fantner, D.J. Burns, A.M. Belcher, I.W. Rangelow, K. Youcef-Toumi, DMCMN: in depth characterization and control of AFM cantilevers with integrated sensing and actuation, J. Dyn. Syst. Meas. Control, 131 (2009) 61104–61111.

    Google Scholar 

  34. K. Dransfeld, P. Guethner and K. Heitmann, US Patent 5, 212, 987, US Patent and Trademark Office (1993).

  35. H. Edwards, L. Taylor, W. Duncan and A.J. Melmed, Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor, J. Appl. Phys., 82 (1997) 980–984.

    Article  ADS  Google Scholar 

  36. F.J. Giessibl, F. Pielmeier, T. Eguchi, T. An and Y. Hasegawa, Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators, Phys. Rev. B, 84 (2011) 125409–125424.

    Article  ADS  Google Scholar 

  37. List of reference standards, http://www.nanoscale.de/standards. Accessed 26 Sept 2013.

  38. L. Koenders, T. Dziomba, P. Thomsen-Schmidt, and G. Wilkening, Standards for the calibration of instrumentsfor dimensional nanometrology, in Nanoscale calibration standards and methods dimensional and related measurements in the micro- and nanometer range, ed. by G. Wilkening and L. Koenders, Wiley, Weinheim (2005) pp. 245–258.

  39. B. Andreas et al., Determination of the Avogadro constant by counting atoms in a 28Si crystal, Phys. Rev. Lett., 106 (2011) 30801–30804.

    Article  ADS  Google Scholar 

  40. D. Fujita, K. Onishi and M. Xu, Standardization of nanomaterials characterization by scanning probe microscopy for societal acceptance, J. Phys: Conf. Ser., 159 (2009) 12002–12006.

    ADS  Google Scholar 

  41. EU project Co-Nanomet, http://www.co-nanomet.eu. Accessed 26 Sept 2013.

  42. H.U. Danzebrink and L. Koenders, Co-nanomet workshop on critical dimensions and scanning probe techniques & thin films, Brno, Oct 2010.

  43. iMERA Roadmaps, http://technologyroadmaps.eu/doku.php?id=micro_and_nano. Accessed 14 Sept 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gargi Raina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, G. Atomic Force Microscopy as a Nanometrology Tool: Some Issues and Future Targets. MAPAN 28, 311–319 (2013). https://doi.org/10.1007/s12647-013-0085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-013-0085-6

Keywords

Navigation