Abstract
The discovery 8 years ago of the quantum Hall effect (QHE) in graphene sparked an immediate interest in the metrological community. Here was a material which was completely different from commonly used semiconductor systems and which seemed to have some uniques properties which could make it ideally suited for high-precision resistance metrology. However, measuring the QHE in graphene turned out to be not so simple as first thought. In particular the small size of exfoliated graphene samples made precision measurements difficult. This dramatically changed with the development of large-area graphene grown on SiC and in this short review paper we discuss the journey from first observation to the highest-ever precision comparison of the QHE.
Similar content being viewed by others
References
K.V. Klitzing, G. Dorda and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., 45 (1980) 4.
B. Jeckelmann and B. Jeanneret, The quantum Hall effect as an electrical resistance standard, Rep. Prog. Phys., 64 (2001) 1603–1655.
A.K. Geim, Graphene: status and prospects, Science, 324 (2009) 1530–1534.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197–200.
Y.B. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 438 (2005) 201–204.
K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim and A.K. Geim, Room-temperature quantum Hall effect in graphene, Science, 315 (2007) 1379–1379.
T.J.B.M. Janssen, A. Tzalenchuk, S. Lara-Avila, S. Kubatkin and V.I. Fal’ko, Rep. Prog. Phys., (2013, in press).
I.M. Mills, P.J. Mohr, T.J. Quinn, B.N. Taylor and E.R. Williams, Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005), Metrologia, 43 (2006) 227–246.
A.J.M. Giesbers, G. Rietveld, E. Houtzager, U. Zeitler, R. Yang, K.S. Novoselov, A.K. Geim and J.C. Maan, Quantum resistance metrology in graphene, Appl. Phys. Lett., 93 (2008) 222109–222112.
T. Shen, J.J. Gu, M. Xu, Y.Q. Wu, M.L. Bolen, M.A. Capano, L.W. Engel and P.D. Ye, Observation of quantum-hall effect in gated epitaxial graphene grown on SiC (0001), Appl. Phys. Lett., 95 (2009) 3.
X.S. Wu, Y.K. Hu, M. Ruan, N.K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger and W.A. de Heer, Half integer quantum Hall effect in high mobility single layer epitaxial graphene, Appl. Phys. Lett., 95 (2009) 3.
A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syvajarvi, R. Yakimova, O. Kazakova, T.J.B. M. Janssen, V. Fal’ko and S. Kubatkin, Towards a quantum resistance standard based on epitaxial graphene, Nat. Nanotechnol., 5 (2010) 186–189.
J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller and H.B. Weber, Quantum oscillations and quantum Hall effect in epitaxial graphene, Phys. Rev. B, 81 (2010) 6.
S. Tanabe, Y. Sekine, H. Kageshima, M. Nagase and H. Hibino, Half-integer quantum Hall effect in gate-controlled epitaxial graphene devices, Appl. Phys. Express, 3 (2010) 3.
J.M. Williams, T.J.B.M. Janssen, G. Rietveld and E. Houtzager, An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements, Metrologia, 47 (2010) 167–174.
S. Kopylov, A. Tzalenchuk, S. Kubatkin and V.I. Fal’ko, Charge transfer between epitaxial graphene and silicon carbide, Appl. Phys. Lett., 97 (2010) 3.
T.J.B.M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov and V.I. Fal’ko, Anomalously strong pinning of the filling factor ν = 2 in epitaxial graphene, Phys. Rev. B, 83 (2011) 4.
S. Lara-Avila, K. Moth-Poulsen, R. Yakimova, T. Bjornholm, V. Fal’ko, A. Tzalenchuk and S. Kubatkin, Non-volatile photochemical gating of an epitaxial graphene/polymer heterostructure, Adv. Mater., 23 (2011) 5.
T.J.B.M. Janssen, N.E. Fletcher, R. Goebel, J.M. Williams, A. Tzalenchuk, R. Yakimova, S. Lara-Avila, S. Kubatkin and V.I. Fal’ko, Graphene, universality of the quantum Hall effect and redefinition of the SI system, New J. Phys., 13 (2011) 6.
C. Virojanadara, C. Virojanadara, M. Syvajarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov and T. Balasubramanian, Homogeneous large-area graphene layer growth on 6H-SiC(0001), Phys. Rev. B, 78 (2008) 6.
S. Lara-Avila, A. Tzalenchuk, S. Kubatkin, R. Yakimova, T.J.B.M. Janssen, K. Cedergren, T. Bergsten and V.I. Fal’ko, Phys. Rev. Lett., (2011, in press).
A. van Bommel, J. Crombeen and A. van Tooren, LEED and auger electron observations of the SiC(0001) surface, Surf. Sci., 48 (1975) 463–472.
C. Riedl, U. Starke, J. Bernhardt, M. Franke and K. Heinz, Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces, Phys. Rev. B, 76 (2007) 8.
F. Varchon, R. Feng, J. Hass, X. Li, B.N. Nguyen, C. Naud, P. Mallet, J.Y. Veuillen, C. Berger, E.H. Conrad and L. Magaud, Electronic structure of epitaxial graphene layers on SiC: effect of the substrate, Phys. Rev. Lett., 99 (2007) 4.
A. Mattausch and O. Pankratov, Ab initio study of graphene on SiC, Phys. Rev. Lett., 99 (2007) 4.
K.V. Emtsev, F. Speck, T. Seyller, L. Ley and J.D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC0001 surfaces: a comparative photoelectron spectroscopy study, Phys. Rev. B, 77 (2008) 10.
Y. Qi, S.H. Rhim, G.F. Sun, M. Weinert and L. Li, Epitaxial graphene on SiC(0001): more than just honeycombs, Phys. Rev. Lett., 105 (2010) 4.
K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Rohrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nat. Mater., 8 (2009) 5.
C. Coletti, C. Riedl, D.S. Lee, B. Krauss, L. Patthey, K. von Klitzing, J.H. Smet and U. Starke, Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping, Phys. Rev. B, 81 (2010) 8.
D. Waldmann, J. Jobst, F. Speck, T. Seyller, M. Krieger and H.B. Weber, Bottom-gated epitaxial graphene, Nat. Mater., 10 (2011) 357–360.
F. Schwierz, Graphene transistors, Nat. Nanotechnol., 5 (2010) 487–496.
S. Luryi, Quantum capacitance devices, Appl. Phys. Lett., 52 (1988) 501.
J.P. Eisenstein, L.N. Pfeiffer and K.W. West, Compressibility of the 2-dimensional electron-gas—measurements of the zero-field exchange energy and fractional quantum Hall gap, Phys. Rev. B, 50 (1994) 1760–1778.
D.L. John, L.C. Castro and D.L. Pulfrey, Quantum capacitance in nanoscale device modeling, J. Appl. Phys., 96 (2004) 5180–5184.
L.A. Ponomarenko, R. Yang, R.V. Gorbachev, P. Blake, A.S. Mayorov, K.S. Novoselov, M.I. Katsnelson and A.K. Geim, Density of states and zero Landau level probed through capacitance of graphene, Phys. Rev. Lett., 105 (2010) 136801.
Y.J. Song, A.F. Otte, Y. Kuk, Y.K. Hu, D.B. Torrance, P.N. First, W.A. de Heer, H.K. Min, S. Adam, M.D. Stiles, A.H. MacDonald and J.A. Stroscio, High-resolution tunnelling spectroscopy of a graphene quartet, Nature, 467 (2010) 185–189.
A.J.M. Giesbers, U. Zeitler, M.I. Katsnelson, L.A. Ponomarenko, T.M. Mohiuddin and J.C. Maan, Quantum-hall activation gaps in graphene, Phys. Rev. Lett., 99 (2007) 4.
M. Furlan, Electronic transport and the localization length in the quantum Hall effect, Phys. Rev. B, 57 (1998) 14818–14828.
A.J.M. Giesbers, U. Zeitler, L.A. Ponomarenko, R. Yang, K.S. Novoselov, A.K. Geim and J.C. Maan, Scaling of the quantum Hall plateau–plateau transition in graphene, Phys. Rev. B, 80 (2009) 4.
K. Bennaceur, P. Jacques, F. Portier, P. Roche and D.C. Glattli, Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene, Phys. Rev. B, 86 (2012) 085433.
J.M. Williams, G. Rietveld, E. Houtzager and T.J.B.M. Janssen, Design considerations for a CCC bridge with complete digital control, IEEE Trans. Instrum. Meas., (2011) 1–6.
T.J. Witt and D. Reymann, Using Power Spectra and Allan Variances to Characterise the Noise of Zener-Diode Voltage Standards, IEE Proc. Sci. Meas. Technol., 147 (2000) 177–182.
A. Hartland, K. Jones, J.M. Williams, B.L. Gallagher and T. Galloway, Direct Comparison of the Quantized Hall Resistance in Gallium–Arsenide and Silicon, Phys. Rev. Lett., 66 (1991) 969–973.
T.J.B.M. Janssen, J.M. Williams, N.E. Fletcher, R. Goebel, A. Tzalenchuk, R. Yakimova, S. Lara-Avila, S. Kubatkin and V.I. Fal’ko, Precision comparison of the quantum Hall effect in graphene and gallium arsenide, Metrologia, 49 (2012) 294–306.
B. Jeckelmann and B. Jeanneret, High-precision measurements of the quantized Hall resistance: experimental conditions for universality, Phys. Rev. B, 55 (1997) 13124–13134.
F. Schopfer and W. Poirier, Testing universality of the quantum Hall effect by means of the Wheatstone bridge, J. Appl. Phys., 102 (2007) 9.
W. Poirier and F. Schopfer, Resistance metrology based on the quantum Hall effect, Eur. Phys. J. Special Top., 172 (2009) 207–245.
D.J. Thouless, Topological interpretations of quantum Hall conductance, J. Math. Phys., 35 (1994) 5362–5372.
H. Bachmair, Determination of the unit of resistance and the Von Klitzing constant R(k) based on a calculable capacitor, Euro. Phys. J. Special Top., 172 (2009) 257–266.
Acknowledgements
Many people have contributed to various parts of our research and the authors are grateful to Rositza Yakimova, Sergey Kopylov, Olga Kazakova, Nick Fletcher, Roland Goebel, Jonathan Williams, Dale Henderson, Stephen Giblin, Pravin Patel, Thomas Bjørnholm, Kasper Moth-Poulsen, Karin Cedergren, and Mikael Syväjärvi. This work was supported by the NMS Pathfinder Programme, Swedish Research Council and Foundation for Strategic Research, EU FP7 STREPs ConceptGraphene and SINGLE, EPSRC Grant EP/G041954 and the Science & Innovation Award EP/G014787.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Janssen, T.J.B.M., Tzalenchuk, A., Lara-Avila, S. et al. Practical and Fundamental Impact of Epitaxial Graphene on Quantum Metrology. MAPAN 28, 239–250 (2013). https://doi.org/10.1007/s12647-013-0064-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12647-013-0064-y