Skip to main content

Isotope dilution mass spectrometry — A primary method of measurement and its role for RM certification

Abstract

This article describes the application of isotope dilution mass spectrometry (IDMS) to the field of reference material (RM) characterisation focusing on the approach, which is applied by the IDMS group at BAM. Emphasis is placed on IDMS measurements of highest analytical quality. Basic principles as well as the equation system are being recalled. Different calibration strategies, such as single, double or triple IDMS, are critically reviewed and the achievable uncertainties are discussed. Differences in the application of thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICPMS) are discussed as well as differences between different types of mass spectrometers such as single collector versus multi-collector or quadrupole versus magnetic sector instruments. Possible sources of errors and bias are mentioned and correction models introduced and applied within the past years are discussed. Several examples for RM characterisations in the field of elemental analysis are shown, each demonstrating excellent analytical quality. In general it can be stated that IDMS is the most important reference method for elemental analysis, offering highest accuracy and precision or smallest measurement uncertainties, when properly applied. Thus IDMS represents by far the best suited reference method for RM characterisation. Due to its universal applicability IDMS offers sufficient potential to follow future needs in analytical chemistry as well as in the RM sector

This is a preview of subscription content, access via your institution.

References

  1. E. Roth, Critical Evaluation of the Use and Analysis of Stable Isotopes, Pure Appl. Chem., 69 (1997) 1753–1828.

    Article  Google Scholar 

  2. M. Berglund, Introduction to Isotope Dilution Mass Spectrometry (IDMS) in P. De Groot (ed.), Handbook of Stable Isotope Analytical Techniques, 1 (2004) 820–834.

  3. G. von Hevesy and F. Paneth, The Solubility of Lead Sulphides and Lead Chromates, Z. Anorg. Chem., 82 (1913) 323–328.

    Article  Google Scholar 

  4. R. Schoenheimer and D. Rittenberg, Studies in Protein Metabolism I. General Considerations in the Application of Isotopes to the Study of Protein Metabolism. The Normal Abundance of Nitrogen Isotopes in Amino Acids, J. Biol. Chem., 127 (1939) 285–290.

    Google Scholar 

  5. D. Rittenberg, A.S. Keston, F. Rosebury and R. Schoenheimer, Studies in Protein Metabolism II. The Determination of Nitrogen Isotopes Organic Compounds, J. Biol. Chem., 127 (1939) 291–299.

    Google Scholar 

  6. R. Schoenheimer and S. Ratner, Studies in Protein Metabolism III. Synthesis of Amino Acids Containing Isotopic Nitrogen, J. Biol. Chem., 127 (1939) 301–313.

    Google Scholar 

  7. D. Rittenberg, R. Schoenheimer and A.S. Keston, Studies in Protein Metabolism IX. The Utilization of Ammonia by Normal Rats on a Stock Diet, J. Biol. Chem., 128 (1939) 603–607.

    Google Scholar 

  8. R. Schoenheimer, S. Ratner and D. Rittenberg, Studies in Protein Metabolism X. The Metabolic Activity of Body Proteins Investigated with l (-)-Leucine Containing Two Isotopes, J. Biol. Chem., 130 (1939) 703–732.

    Google Scholar 

  9. A.V. Grosse, S.G. Hindin and A.D. Kirshenbaum, Elementary Isotopic Analysis — Determination of Oxygen, J. Am. Chem. Soc., 68 (1946) 2119–2119.

    Article  Google Scholar 

  10. A.V. Grosse, A.D. Kirshenbaum and S.G. Hindin, Elementary Isotopic Analysis — Determination of Carbon, Science, 105 (1947) 100–101.

    ADS  Article  Google Scholar 

  11. A. V. Grosse, S.G. Hindin and A.D. Kirshenbaum, Elementary Isotopic Analysis — Determination of Oxygen, Carbon, and Nitrogen in Organic Compounds, Anal. Chem., 21 (1949) 386–390.

    Article  Google Scholar 

  12. A.D. Kirshenbaum and A.V. Grosse, Determination of Sulfur by Elementary Isotopic Analysis, Anal. Chem., 22 (1950) 613–614.

    Article  Google Scholar 

  13. R.J. Hayden, J.H. Reynolds and M.G. Inghram, Reactions Induced by Slow Neutron Irradiation of Europium, Physical Review, 75 (1949) 1500–1507.

    ADS  Article  Google Scholar 

  14. H.E. Suess, R.J. Hayden and M.G. Inghram, Age of Tektites, Nature,168 (1951) 432–433.

    ADS  Article  Google Scholar 

  15. E.P. Steinberg, L.E. Glendenin, M.G. Inghram and R.J. Hayden, Fine Structure in u233 Fission, Physical Review, 95 (1954) 867–868.

    ADS  Article  Google Scholar 

  16. K.G. Heumann, Isotope Dilution Mass Spectrometry, in: F. Adams, R. Gijbels and R. van Grieken, (Eds.), Inorganic Mass Spectrometry, Wiley & Sons, New York, (1988) 301–356.

    Google Scholar 

  17. K. Okamoto, Preparation and Certification of Rice Flour Unpolished Reference Material, Sci. Total Environ., 107 (1991) 29–44.

    Article  Google Scholar 

  18. Y. Igarashi, K. Shiraishi, Y. Takaku, K. Masuda, R. Seki and M. Yamamoto, Application of Isotope-Dilution for the Determination of Thorium in Biological Samples by Inductively Coupled Plasma Mass-Spectrometry, Anal. Sci., 8 (1992) 475–479.

    Article  Google Scholar 

  19. L. Rottmann and K.G. Heumann, Determination of Heavy-Metal Interactions with Dissolved Organic Materials in Natural Aquatic Systems by Coupling a High-Performance Liquid-Chromatography System with an Inductively-Coupled Plasma-Mass Spectrometer, Anal. Chem., 66 (1994) 3709–3715.

    Article  Google Scholar 

  20. W. Yi, A.N. Halliday, D.C. Lee and M. Rehkamper, Precise Determination of Cadmium, Indium and Tellurium Using Multiple Collector ICP-MS, Geostand. Newsl., 22 (1998) 173–179.

    Article  Google Scholar 

  21. K.G. Heumann, Isotope-Dilution Mass-Spectrometry (IDMS) of the Elements, Mass Spectrom. Rev., 11 (1992) 41–67.

    Article  Google Scholar 

  22. K.G. Heumann, Isotope-Dilution Mass Spectrometry, Int. J. Mass Spectrom. Ion Process., 118 (1992) 575–592.

    ADS  Article  Google Scholar 

  23. P. De Bièvre, Isotope Dilution Mass Spectrometry (IDMS), in: R.F. Herber and M. Stoeppler (Eds.): Trace Element Analysis in Biological Specimens, Elsevier, Amsterdam, (1994) 169–183.

    Google Scholar 

  24. L.J. Moore, H.M. Kingston, T.J. Murphy and P. J. Paulsen, The Use of Isotope-Dilution Mass- Spectrometry for the Certification of Standard Reference Materials, Environ. Int., 10 (1984) 169–173.

    Article  Google Scholar 

  25. J.I.G. Alonso, J.R. Encinar, P.R. Gonzalez and A. Sanz-Medel, Determination of Butyltin Compounds in Environmental Samples by Isotope-Dilution GC-ICP-MS, Anal. Bioanal. Chem., 373 (2002) 432–440.

    Article  Google Scholar 

  26. P. Rodriguez-Gonzalez, J.M. Marchante-Gayon, J.I.G. Alonso and A. Sanz-Medel, Isotope Dilution Analysis for Elemental Speciation: A Tutorial Review, Spectrochimica Acta, Part BAtomic Spectroscopy, 60 (2005) 151–207.

    ADS  Article  Google Scholar 

  27. R. Clough, J. Truscatt, S. T. Belt, E. H. Evans, B. Fairman and T. Catterick, Isotope Dilution ICPMS for Speciation Studies, Applied Spectroscopy Reviews, 38 (2003) 101–132.

    ADS  Article  Google Scholar 

  28. C. Pin and B. Le Fevre, Isotope Dilution with Matrix Element Removal: A Key for High- Precision, High-Accuracy Trace Analysis of Geological Samples Using Inductively Coupled Plasma-Mass Spectrometry, Geostand. Newsl., 26 (2002) 135–148.

    Article  Google Scholar 

  29. K.G. Heumann, Isotope-Dilution ICP-MS for Trace Element Determination and Speciation: From a Reference Method to a Routine Method?, Anal. Bioanal. Chem., 378 (2004) 318–329.

    Article  Google Scholar 

  30. J. Vogl, Characterisation of Reference Materials by Isotope Dilution mass Spectrometry, J. Anal. At. Spectrom., 22 (2007) 475–492.

    Article  Google Scholar 

  31. J. Diemer, C.R. Quétel and P.D.P. Taylor, Comparison of the Performance of Different ICPMS Instruments on the Measurement of CU in a Water Sample by ICP-IDMS, J. Anal. At. Spectrom., 17 (2002) 1137–1142.

    Article  Google Scholar 

  32. F. Wombacher, M. Rehkamper, K. Mezger and C. Munker, Stable Isotope Compositions of Cadmium in Geological Materials and Meteorites Determined by Multiple-Collector ICPMS, Geochim. Cosmochim. Acta., 67 (2003) 4639–4654.

    ADS  Article  Google Scholar 

  33. NIST: National Institute of Standards and Technology, Gaithersburg, USA, http://www.nist.gov

  34. IRMM: European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel, Belgium, http://irmm.jrc.ec.europa.eu

  35. J.R. De Laeter, J.K. Bohlke, P. De Bievre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, Atomic Weights of the Elements: Review, 2000 — (IUPAC Technical Report), Pure Appl. Chem., 75 (2003) 683–800.

    Article  Google Scholar 

  36. R. D. Loss, Atomic Weights of the Elements 2001 — (IUPAC Technical Report), Pure Appl. Chem., 75 (2003) 1107–1122.

    Article  Google Scholar 

  37. A. Henrion, Reduction of Systematic-Errors in Quantitative-Analysis by Isotope-Dilution Mass-Spectrometry (IDMS) — an Iterative Method, Fresenius J. Anal. Chem., 350 (1994) 657–658.

    Article  Google Scholar 

  38. M. Sargent, R. Harte and C. Harrington, Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry (IDMS), Royal Society of Chemistry, Cambridge, (2002)

    Google Scholar 

  39. K.G. Heumann, E. Kubassek and W. Schwabenbauer, Mass-Spectrometric Isotope Dilution Analysis of Small Calcium Concentrations in Minerals, Fresenius Zeitschrift Fur Analytische Chemie, 287 (1977) 121–127.

    Article  Google Scholar 

  40. M. J. T. Milton and J.A. Wang, High Accuracy Method for Isotope Dilution Mass Spectrometry with Application to the Measurement of Carbon Dioxide, Int. J. Mass Spectrom., 218 (2002) 63–73.

    Article  Google Scholar 

  41. M.J.T. Milton and J. Wang, High Accuracy Method for the Application of Isotope Dilution to Gas Chromatography/Mass Spectrometric Analysis of Gases, Rapid Commun. Mass Spectrom., 17 (2003) 2621–2625.

    Article  Google Scholar 

  42. J. Vogl and W. Pritzkow, Isotope Reference Materials for Present and Future Isotope Research, J. Anal. At. Spectrom., 25 (2010) 923–932.

    Article  Google Scholar 

  43. L. Rottmann and K.G. Heumann, Development of an Online Isotope-Dilution Technique with HPLC ICP-MS for the Accurate Determination of Elemental Species, Fresenius J. Anal. Chem., 350 (1994) 221–227.

    Article  Google Scholar 

  44. K.G. Heumann, L. Rottmann and J. Vogl, Elemental Speciation with Liquid-Chromatography Inductively-Coupled Plasma Isotope-Dilution Mass-Spectrometry, J. Anal. At. Spectrom., 9 (1994) 1351–1355.

    Article  Google Scholar 

  45. G. Koellensperger, S. Hann, J. Nurmi, T. Prohaska and G. Stingeder, Uncertainty of Species Unspecific Quantification Strategies in Hyphenated ICP-MS Analysis, J. Anal. At. Spectrom., 18 (2003) 1047–1055.

    Article  Google Scholar 

  46. K.G. Kehl, K. Weirauch, S. Wunderli and V.R. Meyer, The Influence of Variations in Atmospheric Pressure on the Uncertainty Budget of Weighing Results, Analyst, 125 (2000) 959–962.

    ADS  Article  Google Scholar 

  47. A. Reichmuth, S. Wunderli, M. Weber and V.R. Meyer, The Uncertainty of Weighing Data Obtained with Electronic Analytical Balances, Microchim. Acta., 148 (2004) 133–141.

    Article  Google Scholar 

  48. M. Pozivil, W. Winiger, S. Wunderli and V.R. Meyer, The Influence of Climate Conditions on Weighing Results, Microchim. Acta., 154 (2006) 55–63.

    Article  Google Scholar 

  49. Mettler Toledo Switzerland, http://ch.mt.com/home

  50. J. Vogl and M. Ostermann, On the Measurement of the Moisture Content in Different Matrix Materials, Accredit. Qual. Assur., 11 (2006) 356–362.

    Article  Google Scholar 

  51. H.Z. Wei, Y.K. Xiao, A. Sun, C.G. Zhang and S. Z. Li, Effective Elimination of Isobaric Ions Interference and Precise Thermal Ionization Mass Spectrometer Analysis for Boron Isotope, Int. J. Mass Spectrom., 235 (2004) 187–195.

    Article  ADS  Google Scholar 

  52. I.T. Platzner (Ed.), Modern Isotope Ratio Mass Spectrometry, John Wiley & Sons, Chichester, UK, (1997).

    Google Scholar 

  53. J. Vogl, Calibration Strategies and Quality Assurance, in: S. Nelms (Ed.) ICP Mass Spectrometry, Blackwell Publishing Ltd, Oxford, (2005) 147–181.

    Google Scholar 

  54. G. Horlick and A. Montaser, Analytical Characteristics of ICP-MS, in: A. Montaser (Ed.), Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, (1998) 503–614.

    Google Scholar 

  55. P. Dulski, Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare-Earth Elements in Geological Samples by Inductively-Coupled Plasma-Mass Spectrometry, Fresenius J. Anal. Chem., 350 (1994) 194–203.

    Article  Google Scholar 

  56. J. Vogl, C.R. Quétel, M. Ostermann, I. Papadakis, L. Van Nevel and P.D.P. Taylor, Contribution to the Certification of B, Cd, Mg, Pb, Rb, Sr and U in a Natural Water Sample for the International Measurement Evaluation Programme Round 9 (IMEP-9) Using ID-ICPMS, Accredit. Qual. Assur., 5 (2000) 272–279.

    Article  Google Scholar 

  57. C.J. Park, K.H. Cho, J.K. Suh and M.S. Han, Determination of Cadmium in Sediment Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry with Correction of Tin Isobaric Interference Using Mass Bias Equations, J. Anal. At. Spectrom., 15 (2000) 567–570.

    Article  Google Scholar 

  58. P. Klingbeil, J. Vogl, W. Pritzkow, G. Riebe and J. Muller, Comparative Studies on the Certification of Reference Materials by ICPMS and TIMS Using Isotope Dilution Procedures, Anal. Chem., 73 (2001) 1881–1888.

    Article  Google Scholar 

  59. P. Evans, C. Wolff-Briche and B. Fairman, High Accuracy Analysis of Low Level Sulfur in Diesel Fuel by Isotope Dilution High Resolution ICPMS Using Silicon for Mass Bias Correction of Natural Isotope Ratios, J. Anal. At. Spectrom., 16 (2001) 964–969.

    Article  Google Scholar 

  60. J. Vogl, P. Klingbeil, W. Pritzkow and G. Riebe, High Accuracy Measurements of fe Isotopes Using Hexapole Collision Cell MC-ICP-MS and Isotope Dilution for Certification of Reference Materials, J. Anal. At. Spectrom., 18 (2003) 1125–1132.

    Article  Google Scholar 

  61. D.J. Douglas and S.D. Tanner, Fundamental Considerations in ICP-MS, in: A. Montaser (Ed.), Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, (1998), pp. 421–501

    Google Scholar 

  62. L.A. Allen, J.J. Leach and R.S. Houk, Spatial Location of the Space Charge Effect in Individual Ion Clouds Using Monodisperse Dried Microparticulate Injection with a Twin Quadrupole Inductively Coupled Plasma Mass Spectrometer, Anal. Chem., 69 (1997) 2384–2391.

    Article  Google Scholar 

  63. K. Habfast, Fractionation in the Thermal Ionization Source, Int. J. Mass Spectrom. Ion Process., 51 (1983) 165–189.

    Article  Google Scholar 

  64. D.C. Gregoire, B.M. Acheson and R.P. Taylor, Measurement of Lithium Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry: Application to Geological Materials, J. Anal. At. Spectrom., 11 (1996) 765–772.

    Article  Google Scholar 

  65. F. Vanhaecke, L. Moens, R. Dams, I. Papadakis and P. Taylor, Applicability of High-Resolution ICP Mass Spectrometry for Isotope Ratio Measurements, Anal. Chem., 69 (1997) 268–273.

    Article  Google Scholar 

  66. Q.L. Xie and R. Kerrich, Isotope Ratio Measurement by Hexapole ICP-MS: Mass Bias Effect, Precision and Accuracy, J. Anal. At. Spectrom., 17 (2002) 69–74.

    Article  Google Scholar 

  67. Q.L. Xie and R. Kerrich, Optimization of Operating-Conditions for Improved Precision of Zirconium and Hafnium Isotope Ratio Measurement by Inductively-Coupled Plasma- Mass Spectrometry (ICP-MS), J. Anal. At. Spectrom., 10 (1995) 99–103.

    Article  Google Scholar 

  68. J.I.G. Alonso, F. Sena, P. Arbore, M. Betti and L. Koch, Determination of Fission-Products and Actinides in Spent Nuclear-Fuels by Isotope- Dilution Ion Chromatography Inductively- Coupled Plasma-Mass Spectrometry, J. Anal. At. Spectrom., 10 (1995) 381–393.

    Article  Google Scholar 

  69. T. Hirata, Lead Isotopic Analyses of NIST Standard Reference Materials Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry Coupled with a Modified External Correction Method for Mass Discrimination Effect, Analyst, 121 (1996) 1407–1411.

    ADS  Article  Google Scholar 

  70. P.D.P. Taylor, P. Debievre, A.J. Walder and A. Entwistle, Validation of the Analytical Linearity and Mass Discrimination Correction Model Exhibited by a Multiple Collector Inductively-Coupled Plasma-Mass Spectrometer by Means of a Set of Synthetic Uranium Isotope Mixtures, J. Anal. At. Spectrom., 10 (1995) 395–398.

    Article  Google Scholar 

  71. M. H. Dodson, A Theoretical Study of Use of Internal Standards for Precise Isotopic Analysis by Surface Ionization Technique. 1. General First-Order Algebraic Solutions, Journal of Scientific Instruments, 40 (1963) 289–295.

    ADS  Article  Google Scholar 

  72. W.A. Russell, D.A. Papanastassiou and T.A. Tombrello, Ca Isotope Fractionation on Earth and Other Solar-System Materials, Geochim. Cosmochim. Acta., 42 (1978) 1075–1090.

    ADS  Article  Google Scholar 

  73. G.P. Russ and J.M. Bazan, Isotopic Ratio Measurements with an Inductively Coupled Plasma Source-Mass Spectrometer, Spectroc. Acta Pt. B-Atom. Spectr., 42 (1987) 49–62.

    ADS  Article  Google Scholar 

  74. W. Pritzkow, S. Wunderli, J. Vogl and G. Fortunato, The Isotope Abundances and the Atomic Weight of Cadmium by a Metrological Approach, Int. J. Mass Spectrom., 261 (2007) 74–85.

    ADS  Article  Google Scholar 

  75. J. Vogl, Charakterisierung und Quantifizierung von Schwermetall/Huminstoff-Species durch HPLC/ICP-MS, Doctoral Thesis, University of Regensburg, (1997).

  76. N.S. Belshaw, P.A. Freedman, R.K. O’Nions, M. Frank and Y. Guo, A New Variable Dispersion Double-Focusing Plasma Mass Spectrometer with Performance Illustrated for Pb Isotopes, Int. J. Mass Spectrom., 181 (1998) 51–58.

    Article  Google Scholar 

  77. P. Evans, C. Wolff-Briche and B. Fairman, High Accuracy Analysis of Low Level Sulfur in Diesel Fuel by Isotope Dilution High Resolution’ ICPMS, Using Silicon for Mass Bias Correction of Natural Isotope Ratios, J. Anal. At. Spectrom., 16 (2001) 964–969.

    Article  Google Scholar 

  78. A.G. Adriaens, W.R. Kelly and F.C. Adams, Propagation of Uncertainties in Isotope-Dilution Mass-Spectrometry Using Pulse Counting Detection, Anal. Chem., 65 (1993) 660–663.

    Article  Google Scholar 

  79. A. Held and P.D.P. Taylor, A Calculation Method Based on Isotope Ratios for the Determination of Dead Time and Its Uncertainty in ICP-MS and Application of the Method to Investigating Some Features of a Continuous Dynode Multiplier, J. Anal. At. Spectrom., 14 (1999) 1075–1079.

    Article  Google Scholar 

  80. S.M. Nelms, C.R. Quétel, T. Prohaska, J. Vogl and P.D.P. Taylor, Evaluation of Detector Dead Time Calculation Models for ICP-MS, J. Anal. At. Spectrom., 16 (2001) 333–338.

    Article  Google Scholar 

  81. J. Moser, W. Wegscheider, T. Meisel and N. Fellner, An Uncertainty Budget for Trace Analysis by Isotope-Dilution ICP-MS with Proper Consideration of Correlation, Anal. Bioanal. Chem., 377 (2003) 97–110.

    Article  Google Scholar 

  82. W. Pritzkow, J. Vogl, R. Köppen and A. Ostermann, Determination of Sulfur Isotope Abundance Ratios for SI-Traceable Low Sulfur Concentration Measurements in Fossil Fuels by ID-TIMS, Int. J. Mass Spectrom., 242 (2005) 309–318.

    Article  ADS  Google Scholar 

  83. ASTM D2622-05, Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry, (2006), http://www.astm.org

  84. Z.W. Chen, F. Wei, I. Radley and B. Beumer, Low-Level Sulfur in Fuel Determination Using Monochromatic WD XRF — ASTM D 7039-04″, J. ASTM Int., 2 (2005), DOI: 10.1520/JAI12971.

  85. L. Van Nevel, I. Verbist, C. Harper, S. Bynens, P. Smeyers, Y. Aregbe, P. Robouch, P.D.P. Taylor, G. Turck, R. Vocke and W.R. Kelly, IMEP-18 Sulphur in Diesel Fuel (Gasoil) Report to Participants, European Commission, Report EUR 21765 EN, European Communities, (2005).

  86. International Vocabulary of Metrology — Basic and General Concepts and Associated Terms VIM, 3rd edition, JCGM 200:2008, http://www.bipm.org/en/publications/guides/vim.html also ISO Guide 99-12 (2007).

  87. International Standards Organization, Guide to Expression of Uncertainty in Measurement, ISO, Geneva, (1995).

    Google Scholar 

  88. EURACHEM, Quantifying Uncertainty in Analytical Measurement, LGC, Teddington, UK, (1995).

    Google Scholar 

  89. GUM workbench, Metrodata GmbH, Germany, http://www.metrodata.de/

  90. H. Kipphardt, R. Matschat, O. Rienitz, D. Schiel, W. Gernand and D. Oeter, Traceability System for Elemental Analysis, Accredit. Qual. Assur., 10 (2006) 633–639.

    Article  Google Scholar 

  91. K.G. Heumann, S.M. Gallus, G. Radlinger and J. Vogl, Precision and Accuracy in Isotope Ratio Measurements by Plasma Source Mass Spectrometry, J. Anal. At. Spectrom., 13 (1998) 1001–1008.

    Article  Google Scholar 

  92. Comité consultatif pour la quantité de matière — métrologie en chimie, Sèvres, France, http://www.bipm.fr/en/committees/cc/ccqm/

  93. J.C. Wolff, B. Dyckmans, P.D.P. Taylor and P. De Bièvre, Certification of a N-15-Enriched Nitrate Species-Specific spike Isotopic Reference Material IRMM-627, Int. J. Mass Spectrom. Ion Process., 156 (1996) 67–75.

    ADS  Article  Google Scholar 

  94. P. De Bièvre and H.S. Peiser, Basic Equations and Uncertainties in Isotope-Dilution Mass Spectrometry for Traceability to SI of Values Obtained by This Primary Method, Fresenius J. Anal. Chem., 359 (1997) 523–525.

    Article  Google Scholar 

  95. I. Papadakis, P.D.P. Taylor and P. De Bièvre, SITraceable Values for Cadmium and Lead Concentration in the Candidate Reference Material, MURST-ISS A1 Antarctic Sediment, by Combination of ICP-MS with Isotope Dilution, Anal. Chim. Acta., 346 (1997) 17–22.

    Article  Google Scholar 

  96. I. Papadakis, C.R. Quétel, P.D.P. Taylor and P. De Bièvre, Contribution to the Certification of Cadmium and Lead Amount Content in the BCR CRM-278R Mussel Tissue by Isotope Dilution Mass Spectrometry, Accredit. Qual. Assur., 5 (2000) 198–204.

    Article  Google Scholar 

  97. J. Vogl, D. Liesegang, M. Ostermann, J. Diemer, M. Berglund, C.R. Quétel, P.D.P. Taylor and K. G. Heumann, Producing SI-Traceable Reference Values for Cd, Cr and Pb Amount Contents in Polyethylene Samples from the Polymer Elemental Reference Material (PERM) Project Using Isotope Dilution Mass Spectrometry, Accredit. Qual. Assur., 5 (2000) 314–324.

    Article  Google Scholar 

  98. A. Dobney, H. Klinkenberg, F. Souren and W. Van Borm, Uncertainty Calculations for Amount of Chemical Substance Measurements Performed by Means of Isotope Dilution Mass Spectrometry as Part of the PERM Project, Anal. Chim. Acta., 420 (2000) 89–94.

    Article  Google Scholar 

  99. W. Pritzkow, J. Vogl, A. Berger, K. Ecker, R. Grotzschel, P. Klingbeil, L. Persson, G. Riebe and U. Watjen, Contribution of ICP-IDMS to the Certification of Antimony Implanted in a Silicon Wafer — Comparison with RBS and INAA Results, Fresenius J. Anal. Chem., 371 (2001) 867–873.

    Article  Google Scholar 

  100. J.L. Love, Chemical Metrology, Chemistry and the Uncertainty of Chemical Measurements, Accredit. Qual. Assur., 7 (2002) 95–100.

    MathSciNet  Article  Google Scholar 

  101. S. Wunderli, Uncertainty and Sampling, Accredit. Qual. Assur., 8 (2003) 90–90.

    Article  Google Scholar 

  102. J. Love, Untitled, Accredit. Qual. Assur., 8 (2003) 161–162.

    Article  Google Scholar 

  103. S. Wunderli, Untitled, Accredit. Qual. Assur., 8 (2003) 367.

    Article  Google Scholar 

  104. M. Thompson, Reply to the Letters to the Editor by Samuel Wunderli, Accred. Qual. Assur., 8 (2003) 90 and 367, Accredit. Qual. Assur., 9 (2004) 425–426.

    Article  Google Scholar 

  105. S. Wunderli, Sampling and Uncertainty — Reply to the Letters to the Editor, Accredit. Qual. Assur., 10 (2005) 255–256.

    Article  Google Scholar 

  106. J. Vogl, P. Klingbeil, W. Pritzkow, G. Riebe, G. Wermann, P. Turner, N. Wortel and J. Woittiez, High Resolution ICP-IDMS for Reference Material Definition Measurement, RTD-Project within the 4th Framework of the European Commission DG XII, Contract No. SMT4-CT96- 2141, (2002), p. 17

  107. P. Klingbeil, Methodenentwicklung für die Präzisionsanalytik von Spurenelementen mittels Multikollektor-ICP-MS unter Anwendungder Isotopenverdünnungstechnik, Doctoral Thesis, Technische Universität Berlin, (2001).

  108. H. Kipphardt, Traceability in Isotopic Measurements, in: P. De Groot (Ed.), Handbook of Stable Isotope Analytical Techniques, 1 (2004) 928–943.

  109. The international System of Units (SI), Bureau International des Poids et Mesures, 7th edition, Sèvres (France), (1998).

  110. A. Lamberty, W. Van Borm and Ph. Quevauviller, The Certification of Mass Fraction of As, Br, Cl, Cr, Hg, Pb and S in Two Polyethylene CRMs — BCR-680 and BCR-681, European Commission, (2001), EUR 19450 EN

  111. D.R. Christmann and J.D. Ingle, Problems with Sub-ppb Mercury Determinations — Preservation of Standards and Prevention of Water Mist Interferences, Anal. Chim. Acta., 86 (1976) 53–62.

    Article  Google Scholar 

  112. S.E. Long, T.D. Martin, and E.R. Martin, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry, Revision 5.4, U.S. Environmental Protection Agency, Cincinnati, Ohio (1994).

    Google Scholar 

  113. J. Allibone, E. Fatemian and P.J. Walker, Determination of Mercury in Potable Water by ICP-MS Using Gold as a Stabilising Agent, J. Anal. At. Spectrom., 14 (1999) 235–239.

    Article  Google Scholar 

  114. B. T. Sturman, Comment on Determination of Mercury in Potable Water by ICP-MS Using Gold as a Stabilising Agent (J. Allibone, E. Fatemian and P. J. Walker, J. Anal. At. Spectrom., 14 (1999) 235), J. Anal. At. Spectrom., 15 (2000) 1512–1512.

    Article  Google Scholar 

  115. J. Diemer and K.G. Heumann, Development of an ICP-IDMS Method for Accurate Routine Analyses of Toxic Heavy Metals in Polyolefins and Comparison with Results by TI-IDMS, Fresenius J. Anal. Chem., 368 (2000) 103–108.

    Article  Google Scholar 

  116. Bureau International des Poids et Mesures, Consultative Committee for Amount of Substance: Key Comparison CCQM-K8, Internet Homepage: http://www.bipm.fr, BIPM, Paris, France.

  117. I. Müller, Digestion and Preparation of Organic and Biological Microsamples for Ultratrace Elemental Analysis, Atom. Spectrosc., 19 (1998) 45–47.

    Google Scholar 

  118. K. H. Ecker, U. Watjen, A. Berger, L. Persson, W. Pritzkow, M. Radtke and H. Riesemeier, RBS, SY-XRF, INAA and ICP-IDMS of Antimony Implanted in Silicon — a Multi-Method Approach to Characterize and Certify a Reference Material, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 188 (2002) 120–125.

    ADS  Article  Google Scholar 

  119. K.H. Ecker, U. Wätjen, A. Berger, R. Grötzschel, L. Persson, W. Pritzkow, G. Riebe and J. Vogl, Certification Report, Antimony Implanted in Silicon Wafer with a Silicon Dioxide Diffusion Barrier, Certified Reference Materials ERMEG001″, Report EUR 20125 EN, (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Vogl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vogl, J., Pritzkow, W. Isotope dilution mass spectrometry — A primary method of measurement and its role for RM certification. MAPAN 25, 135–164 (2010). https://doi.org/10.1007/s12647-010-0017-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-010-0017-7

Keywords

  • Isotope Ratio
  • Instrumental Neutron Activation Analysis
  • Thermal Ionization Mass Spectrometry
  • Rutherford Backscatter Spectrometry
  • Isotope Dilution Mass Spectrometry