, Volume 25, Issue 3, pp 135–164 | Cite as

Isotope dilution mass spectrometry — A primary method of measurement and its role for RM certification

  • Jochen VoglEmail author
  • Wolfgang Pritzkow
Original Article


This article describes the application of isotope dilution mass spectrometry (IDMS) to the field of reference material (RM) characterisation focusing on the approach, which is applied by the IDMS group at BAM. Emphasis is placed on IDMS measurements of highest analytical quality. Basic principles as well as the equation system are being recalled. Different calibration strategies, such as single, double or triple IDMS, are critically reviewed and the achievable uncertainties are discussed. Differences in the application of thermal ionization mass spectrometry (TIMS) and inductively coupled plasma mass spectrometry (ICPMS) are discussed as well as differences between different types of mass spectrometers such as single collector versus multi-collector or quadrupole versus magnetic sector instruments. Possible sources of errors and bias are mentioned and correction models introduced and applied within the past years are discussed. Several examples for RM characterisations in the field of elemental analysis are shown, each demonstrating excellent analytical quality. In general it can be stated that IDMS is the most important reference method for elemental analysis, offering highest accuracy and precision or smallest measurement uncertainties, when properly applied. Thus IDMS represents by far the best suited reference method for RM characterisation. Due to its universal applicability IDMS offers sufficient potential to follow future needs in analytical chemistry as well as in the RM sector


Isotope Ratio Instrumental Neutron Activation Analysis Thermal Ionization Mass Spectrometry Rutherford Backscatter Spectrometry Isotope Dilution Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Roth, Critical Evaluation of the Use and Analysis of Stable Isotopes, Pure Appl. Chem., 69 (1997) 1753–1828.CrossRefGoogle Scholar
  2. [2]
    M. Berglund, Introduction to Isotope Dilution Mass Spectrometry (IDMS) in P. De Groot (ed.), Handbook of Stable Isotope Analytical Techniques, 1 (2004) 820–834.Google Scholar
  3. [3]
    G. von Hevesy and F. Paneth, The Solubility of Lead Sulphides and Lead Chromates, Z. Anorg. Chem., 82 (1913) 323–328.CrossRefGoogle Scholar
  4. [4]
    R. Schoenheimer and D. Rittenberg, Studies in Protein Metabolism I. General Considerations in the Application of Isotopes to the Study of Protein Metabolism. The Normal Abundance of Nitrogen Isotopes in Amino Acids, J. Biol. Chem., 127 (1939) 285–290.Google Scholar
  5. [5]
    D. Rittenberg, A.S. Keston, F. Rosebury and R. Schoenheimer, Studies in Protein Metabolism II. The Determination of Nitrogen Isotopes Organic Compounds, J. Biol. Chem., 127 (1939) 291–299.Google Scholar
  6. [6]
    R. Schoenheimer and S. Ratner, Studies in Protein Metabolism III. Synthesis of Amino Acids Containing Isotopic Nitrogen, J. Biol. Chem., 127 (1939) 301–313.Google Scholar
  7. [7]
    D. Rittenberg, R. Schoenheimer and A.S. Keston, Studies in Protein Metabolism IX. The Utilization of Ammonia by Normal Rats on a Stock Diet, J. Biol. Chem., 128 (1939) 603–607.Google Scholar
  8. [8]
    R. Schoenheimer, S. Ratner and D. Rittenberg, Studies in Protein Metabolism X. The Metabolic Activity of Body Proteins Investigated with l (-)-Leucine Containing Two Isotopes, J. Biol. Chem., 130 (1939) 703–732.Google Scholar
  9. [9]
    A.V. Grosse, S.G. Hindin and A.D. Kirshenbaum, Elementary Isotopic Analysis — Determination of Oxygen, J. Am. Chem. Soc., 68 (1946) 2119–2119.CrossRefGoogle Scholar
  10. [10]
    A.V. Grosse, A.D. Kirshenbaum and S.G. Hindin, Elementary Isotopic Analysis — Determination of Carbon, Science, 105 (1947) 100–101.ADSCrossRefGoogle Scholar
  11. [11]
    A. V. Grosse, S.G. Hindin and A.D. Kirshenbaum, Elementary Isotopic Analysis — Determination of Oxygen, Carbon, and Nitrogen in Organic Compounds, Anal. Chem., 21 (1949) 386–390.CrossRefGoogle Scholar
  12. [12]
    A.D. Kirshenbaum and A.V. Grosse, Determination of Sulfur by Elementary Isotopic Analysis, Anal. Chem., 22 (1950) 613–614.CrossRefGoogle Scholar
  13. [13]
    R.J. Hayden, J.H. Reynolds and M.G. Inghram, Reactions Induced by Slow Neutron Irradiation of Europium, Physical Review, 75 (1949) 1500–1507.ADSCrossRefGoogle Scholar
  14. [14]
    H.E. Suess, R.J. Hayden and M.G. Inghram, Age of Tektites, Nature,168 (1951) 432–433.ADSCrossRefGoogle Scholar
  15. [15]
    E.P. Steinberg, L.E. Glendenin, M.G. Inghram and R.J. Hayden, Fine Structure in u233 Fission, Physical Review, 95 (1954) 867–868.ADSCrossRefGoogle Scholar
  16. [16]
    K.G. Heumann, Isotope Dilution Mass Spectrometry, in: F. Adams, R. Gijbels and R. van Grieken, (Eds.), Inorganic Mass Spectrometry, Wiley & Sons, New York, (1988) 301–356.Google Scholar
  17. [17]
    K. Okamoto, Preparation and Certification of Rice Flour Unpolished Reference Material, Sci. Total Environ., 107 (1991) 29–44.CrossRefGoogle Scholar
  18. [18]
    Y. Igarashi, K. Shiraishi, Y. Takaku, K. Masuda, R. Seki and M. Yamamoto, Application of Isotope-Dilution for the Determination of Thorium in Biological Samples by Inductively Coupled Plasma Mass-Spectrometry, Anal. Sci., 8 (1992) 475–479.CrossRefGoogle Scholar
  19. [19]
    L. Rottmann and K.G. Heumann, Determination of Heavy-Metal Interactions with Dissolved Organic Materials in Natural Aquatic Systems by Coupling a High-Performance Liquid-Chromatography System with an Inductively-Coupled Plasma-Mass Spectrometer, Anal. Chem., 66 (1994) 3709–3715.CrossRefGoogle Scholar
  20. [20]
    W. Yi, A.N. Halliday, D.C. Lee and M. Rehkamper, Precise Determination of Cadmium, Indium and Tellurium Using Multiple Collector ICP-MS, Geostand. Newsl., 22 (1998) 173–179.CrossRefGoogle Scholar
  21. [21]
    K.G. Heumann, Isotope-Dilution Mass-Spectrometry (IDMS) of the Elements, Mass Spectrom. Rev., 11 (1992) 41–67.CrossRefGoogle Scholar
  22. [22]
    K.G. Heumann, Isotope-Dilution Mass Spectrometry, Int. J. Mass Spectrom. Ion Process., 118 (1992) 575–592.ADSCrossRefGoogle Scholar
  23. [23]
    P. De Bièvre, Isotope Dilution Mass Spectrometry (IDMS), in: R.F. Herber and M. Stoeppler (Eds.): Trace Element Analysis in Biological Specimens, Elsevier, Amsterdam, (1994) 169–183.Google Scholar
  24. [24]
    L.J. Moore, H.M. Kingston, T.J. Murphy and P. J. Paulsen, The Use of Isotope-Dilution Mass- Spectrometry for the Certification of Standard Reference Materials, Environ. Int., 10 (1984) 169–173.CrossRefGoogle Scholar
  25. [25]
    J.I.G. Alonso, J.R. Encinar, P.R. Gonzalez and A. Sanz-Medel, Determination of Butyltin Compounds in Environmental Samples by Isotope-Dilution GC-ICP-MS, Anal. Bioanal. Chem., 373 (2002) 432–440.CrossRefGoogle Scholar
  26. [26]
    P. Rodriguez-Gonzalez, J.M. Marchante-Gayon, J.I.G. Alonso and A. Sanz-Medel, Isotope Dilution Analysis for Elemental Speciation: A Tutorial Review, Spectrochimica Acta, Part BAtomic Spectroscopy, 60 (2005) 151–207.ADSCrossRefGoogle Scholar
  27. [27]
    R. Clough, J. Truscatt, S. T. Belt, E. H. Evans, B. Fairman and T. Catterick, Isotope Dilution ICPMS for Speciation Studies, Applied Spectroscopy Reviews, 38 (2003) 101–132.ADSCrossRefGoogle Scholar
  28. [28]
    C. Pin and B. Le Fevre, Isotope Dilution with Matrix Element Removal: A Key for High- Precision, High-Accuracy Trace Analysis of Geological Samples Using Inductively Coupled Plasma-Mass Spectrometry, Geostand. Newsl., 26 (2002) 135–148.CrossRefGoogle Scholar
  29. [29]
    K.G. Heumann, Isotope-Dilution ICP-MS for Trace Element Determination and Speciation: From a Reference Method to a Routine Method?, Anal. Bioanal. Chem., 378 (2004) 318–329.CrossRefGoogle Scholar
  30. [30]
    J. Vogl, Characterisation of Reference Materials by Isotope Dilution mass Spectrometry, J. Anal. At. Spectrom., 22 (2007) 475–492.CrossRefGoogle Scholar
  31. [31]
    J. Diemer, C.R. Quétel and P.D.P. Taylor, Comparison of the Performance of Different ICPMS Instruments on the Measurement of CU in a Water Sample by ICP-IDMS, J. Anal. At. Spectrom., 17 (2002) 1137–1142.CrossRefGoogle Scholar
  32. [32]
    F. Wombacher, M. Rehkamper, K. Mezger and C. Munker, Stable Isotope Compositions of Cadmium in Geological Materials and Meteorites Determined by Multiple-Collector ICPMS, Geochim. Cosmochim. Acta., 67 (2003) 4639–4654.ADSCrossRefGoogle Scholar
  33. [33]
    NIST: National Institute of Standards and Technology, Gaithersburg, USA,
  34. [34]
    IRMM: European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel, Belgium,
  35. [35]
    J.R. De Laeter, J.K. Bohlke, P. De Bievre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor, Atomic Weights of the Elements: Review, 2000 — (IUPAC Technical Report), Pure Appl. Chem., 75 (2003) 683–800.CrossRefGoogle Scholar
  36. [36]
    R. D. Loss, Atomic Weights of the Elements 2001 — (IUPAC Technical Report), Pure Appl. Chem., 75 (2003) 1107–1122.CrossRefGoogle Scholar
  37. [37]
    A. Henrion, Reduction of Systematic-Errors in Quantitative-Analysis by Isotope-Dilution Mass-Spectrometry (IDMS) — an Iterative Method, Fresenius J. Anal. Chem., 350 (1994) 657–658.CrossRefGoogle Scholar
  38. [38]
    M. Sargent, R. Harte and C. Harrington, Guidelines for Achieving High Accuracy in Isotope Dilution Mass Spectrometry (IDMS), Royal Society of Chemistry, Cambridge, (2002)Google Scholar
  39. [39]
    K.G. Heumann, E. Kubassek and W. Schwabenbauer, Mass-Spectrometric Isotope Dilution Analysis of Small Calcium Concentrations in Minerals, Fresenius Zeitschrift Fur Analytische Chemie, 287 (1977) 121–127.CrossRefGoogle Scholar
  40. [40]
    M. J. T. Milton and J.A. Wang, High Accuracy Method for Isotope Dilution Mass Spectrometry with Application to the Measurement of Carbon Dioxide, Int. J. Mass Spectrom., 218 (2002) 63–73.CrossRefGoogle Scholar
  41. [41]
    M.J.T. Milton and J. Wang, High Accuracy Method for the Application of Isotope Dilution to Gas Chromatography/Mass Spectrometric Analysis of Gases, Rapid Commun. Mass Spectrom., 17 (2003) 2621–2625.CrossRefGoogle Scholar
  42. [42]
    J. Vogl and W. Pritzkow, Isotope Reference Materials for Present and Future Isotope Research, J. Anal. At. Spectrom., 25 (2010) 923–932.CrossRefGoogle Scholar
  43. [43]
    L. Rottmann and K.G. Heumann, Development of an Online Isotope-Dilution Technique with HPLC ICP-MS for the Accurate Determination of Elemental Species, Fresenius J. Anal. Chem., 350 (1994) 221–227.CrossRefGoogle Scholar
  44. [44]
    K.G. Heumann, L. Rottmann and J. Vogl, Elemental Speciation with Liquid-Chromatography Inductively-Coupled Plasma Isotope-Dilution Mass-Spectrometry, J. Anal. At. Spectrom., 9 (1994) 1351–1355.CrossRefGoogle Scholar
  45. [45]
    G. Koellensperger, S. Hann, J. Nurmi, T. Prohaska and G. Stingeder, Uncertainty of Species Unspecific Quantification Strategies in Hyphenated ICP-MS Analysis, J. Anal. At. Spectrom., 18 (2003) 1047–1055.CrossRefGoogle Scholar
  46. [46]
    K.G. Kehl, K. Weirauch, S. Wunderli and V.R. Meyer, The Influence of Variations in Atmospheric Pressure on the Uncertainty Budget of Weighing Results, Analyst, 125 (2000) 959–962.ADSCrossRefGoogle Scholar
  47. [47]
    A. Reichmuth, S. Wunderli, M. Weber and V.R. Meyer, The Uncertainty of Weighing Data Obtained with Electronic Analytical Balances, Microchim. Acta., 148 (2004) 133–141.CrossRefGoogle Scholar
  48. [48]
    M. Pozivil, W. Winiger, S. Wunderli and V.R. Meyer, The Influence of Climate Conditions on Weighing Results, Microchim. Acta., 154 (2006) 55–63.CrossRefGoogle Scholar
  49. [49]
    Mettler Toledo Switzerland,
  50. [50]
    J. Vogl and M. Ostermann, On the Measurement of the Moisture Content in Different Matrix Materials, Accredit. Qual. Assur., 11 (2006) 356–362.CrossRefGoogle Scholar
  51. [51]
    H.Z. Wei, Y.K. Xiao, A. Sun, C.G. Zhang and S. Z. Li, Effective Elimination of Isobaric Ions Interference and Precise Thermal Ionization Mass Spectrometer Analysis for Boron Isotope, Int. J. Mass Spectrom., 235 (2004) 187–195.CrossRefADSGoogle Scholar
  52. [52]
    I.T. Platzner (Ed.), Modern Isotope Ratio Mass Spectrometry, John Wiley & Sons, Chichester, UK, (1997).Google Scholar
  53. [53]
    J. Vogl, Calibration Strategies and Quality Assurance, in: S. Nelms (Ed.) ICP Mass Spectrometry, Blackwell Publishing Ltd, Oxford, (2005) 147–181.Google Scholar
  54. [54]
    G. Horlick and A. Montaser, Analytical Characteristics of ICP-MS, in: A. Montaser (Ed.), Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, (1998) 503–614.Google Scholar
  55. [55]
    P. Dulski, Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare-Earth Elements in Geological Samples by Inductively-Coupled Plasma-Mass Spectrometry, Fresenius J. Anal. Chem., 350 (1994) 194–203.CrossRefGoogle Scholar
  56. [56]
    J. Vogl, C.R. Quétel, M. Ostermann, I. Papadakis, L. Van Nevel and P.D.P. Taylor, Contribution to the Certification of B, Cd, Mg, Pb, Rb, Sr and U in a Natural Water Sample for the International Measurement Evaluation Programme Round 9 (IMEP-9) Using ID-ICPMS, Accredit. Qual. Assur., 5 (2000) 272–279.CrossRefGoogle Scholar
  57. [57]
    C.J. Park, K.H. Cho, J.K. Suh and M.S. Han, Determination of Cadmium in Sediment Reference Materials by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry with Correction of Tin Isobaric Interference Using Mass Bias Equations, J. Anal. At. Spectrom., 15 (2000) 567–570.CrossRefGoogle Scholar
  58. [58]
    P. Klingbeil, J. Vogl, W. Pritzkow, G. Riebe and J. Muller, Comparative Studies on the Certification of Reference Materials by ICPMS and TIMS Using Isotope Dilution Procedures, Anal. Chem., 73 (2001) 1881–1888.CrossRefGoogle Scholar
  59. [59]
    P. Evans, C. Wolff-Briche and B. Fairman, High Accuracy Analysis of Low Level Sulfur in Diesel Fuel by Isotope Dilution High Resolution ICPMS Using Silicon for Mass Bias Correction of Natural Isotope Ratios, J. Anal. At. Spectrom., 16 (2001) 964–969.CrossRefGoogle Scholar
  60. [60]
    J. Vogl, P. Klingbeil, W. Pritzkow and G. Riebe, High Accuracy Measurements of fe Isotopes Using Hexapole Collision Cell MC-ICP-MS and Isotope Dilution for Certification of Reference Materials, J. Anal. At. Spectrom., 18 (2003) 1125–1132.CrossRefGoogle Scholar
  61. [61]
    D.J. Douglas and S.D. Tanner, Fundamental Considerations in ICP-MS, in: A. Montaser (Ed.), Inductively Coupled Plasma Mass Spectrometry, Wiley-VCH, New York, (1998), pp. 421–501Google Scholar
  62. [62]
    L.A. Allen, J.J. Leach and R.S. Houk, Spatial Location of the Space Charge Effect in Individual Ion Clouds Using Monodisperse Dried Microparticulate Injection with a Twin Quadrupole Inductively Coupled Plasma Mass Spectrometer, Anal. Chem., 69 (1997) 2384–2391.CrossRefGoogle Scholar
  63. [63]
    K. Habfast, Fractionation in the Thermal Ionization Source, Int. J. Mass Spectrom. Ion Process., 51 (1983) 165–189.CrossRefGoogle Scholar
  64. [64]
    D.C. Gregoire, B.M. Acheson and R.P. Taylor, Measurement of Lithium Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry: Application to Geological Materials, J. Anal. At. Spectrom., 11 (1996) 765–772.CrossRefGoogle Scholar
  65. [65]
    F. Vanhaecke, L. Moens, R. Dams, I. Papadakis and P. Taylor, Applicability of High-Resolution ICP Mass Spectrometry for Isotope Ratio Measurements, Anal. Chem., 69 (1997) 268–273.CrossRefGoogle Scholar
  66. [66]
    Q.L. Xie and R. Kerrich, Isotope Ratio Measurement by Hexapole ICP-MS: Mass Bias Effect, Precision and Accuracy, J. Anal. At. Spectrom., 17 (2002) 69–74.CrossRefGoogle Scholar
  67. [67]
    Q.L. Xie and R. Kerrich, Optimization of Operating-Conditions for Improved Precision of Zirconium and Hafnium Isotope Ratio Measurement by Inductively-Coupled Plasma- Mass Spectrometry (ICP-MS), J. Anal. At. Spectrom., 10 (1995) 99–103.CrossRefGoogle Scholar
  68. [68]
    J.I.G. Alonso, F. Sena, P. Arbore, M. Betti and L. Koch, Determination of Fission-Products and Actinides in Spent Nuclear-Fuels by Isotope- Dilution Ion Chromatography Inductively- Coupled Plasma-Mass Spectrometry, J. Anal. At. Spectrom., 10 (1995) 381–393.CrossRefGoogle Scholar
  69. [69]
    T. Hirata, Lead Isotopic Analyses of NIST Standard Reference Materials Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry Coupled with a Modified External Correction Method for Mass Discrimination Effect, Analyst, 121 (1996) 1407–1411.ADSCrossRefGoogle Scholar
  70. [70]
    P.D.P. Taylor, P. Debievre, A.J. Walder and A. Entwistle, Validation of the Analytical Linearity and Mass Discrimination Correction Model Exhibited by a Multiple Collector Inductively-Coupled Plasma-Mass Spectrometer by Means of a Set of Synthetic Uranium Isotope Mixtures, J. Anal. At. Spectrom., 10 (1995) 395–398.CrossRefGoogle Scholar
  71. [71]
    M. H. Dodson, A Theoretical Study of Use of Internal Standards for Precise Isotopic Analysis by Surface Ionization Technique. 1. General First-Order Algebraic Solutions, Journal of Scientific Instruments, 40 (1963) 289–295.ADSCrossRefGoogle Scholar
  72. [72]
    W.A. Russell, D.A. Papanastassiou and T.A. Tombrello, Ca Isotope Fractionation on Earth and Other Solar-System Materials, Geochim. Cosmochim. Acta., 42 (1978) 1075–1090.ADSCrossRefGoogle Scholar
  73. [73]
    G.P. Russ and J.M. Bazan, Isotopic Ratio Measurements with an Inductively Coupled Plasma Source-Mass Spectrometer, Spectroc. Acta Pt. B-Atom. Spectr., 42 (1987) 49–62.ADSCrossRefGoogle Scholar
  74. [74]
    W. Pritzkow, S. Wunderli, J. Vogl and G. Fortunato, The Isotope Abundances and the Atomic Weight of Cadmium by a Metrological Approach, Int. J. Mass Spectrom., 261 (2007) 74–85.ADSCrossRefGoogle Scholar
  75. [75]
    J. Vogl, Charakterisierung und Quantifizierung von Schwermetall/Huminstoff-Species durch HPLC/ICP-MS, Doctoral Thesis, University of Regensburg, (1997).Google Scholar
  76. [76]
    N.S. Belshaw, P.A. Freedman, R.K. O’Nions, M. Frank and Y. Guo, A New Variable Dispersion Double-Focusing Plasma Mass Spectrometer with Performance Illustrated for Pb Isotopes, Int. J. Mass Spectrom., 181 (1998) 51–58.CrossRefGoogle Scholar
  77. [77]
    P. Evans, C. Wolff-Briche and B. Fairman, High Accuracy Analysis of Low Level Sulfur in Diesel Fuel by Isotope Dilution High Resolution’ ICPMS, Using Silicon for Mass Bias Correction of Natural Isotope Ratios, J. Anal. At. Spectrom., 16 (2001) 964–969.CrossRefGoogle Scholar
  78. [78]
    A.G. Adriaens, W.R. Kelly and F.C. Adams, Propagation of Uncertainties in Isotope-Dilution Mass-Spectrometry Using Pulse Counting Detection, Anal. Chem., 65 (1993) 660–663.CrossRefGoogle Scholar
  79. [79]
    A. Held and P.D.P. Taylor, A Calculation Method Based on Isotope Ratios for the Determination of Dead Time and Its Uncertainty in ICP-MS and Application of the Method to Investigating Some Features of a Continuous Dynode Multiplier, J. Anal. At. Spectrom., 14 (1999) 1075–1079.CrossRefGoogle Scholar
  80. [80]
    S.M. Nelms, C.R. Quétel, T. Prohaska, J. Vogl and P.D.P. Taylor, Evaluation of Detector Dead Time Calculation Models for ICP-MS, J. Anal. At. Spectrom., 16 (2001) 333–338.CrossRefGoogle Scholar
  81. [81]
    J. Moser, W. Wegscheider, T. Meisel and N. Fellner, An Uncertainty Budget for Trace Analysis by Isotope-Dilution ICP-MS with Proper Consideration of Correlation, Anal. Bioanal. Chem., 377 (2003) 97–110.CrossRefGoogle Scholar
  82. [82]
    W. Pritzkow, J. Vogl, R. Köppen and A. Ostermann, Determination of Sulfur Isotope Abundance Ratios for SI-Traceable Low Sulfur Concentration Measurements in Fossil Fuels by ID-TIMS, Int. J. Mass Spectrom., 242 (2005) 309–318.CrossRefADSGoogle Scholar
  83. [83]
    ASTM D2622-05, Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry, (2006),
  84. [84]
    Z.W. Chen, F. Wei, I. Radley and B. Beumer, Low-Level Sulfur in Fuel Determination Using Monochromatic WD XRF — ASTM D 7039-04″, J. ASTM Int., 2 (2005), DOI: 10.1520/JAI12971.Google Scholar
  85. [85]
    L. Van Nevel, I. Verbist, C. Harper, S. Bynens, P. Smeyers, Y. Aregbe, P. Robouch, P.D.P. Taylor, G. Turck, R. Vocke and W.R. Kelly, IMEP-18 Sulphur in Diesel Fuel (Gasoil) Report to Participants, European Commission, Report EUR 21765 EN, European Communities, (2005).Google Scholar
  86. [86]
    International Vocabulary of Metrology — Basic and General Concepts and Associated Terms VIM, 3rd edition, JCGM 200:2008, also ISO Guide 99-12 (2007).
  87. [87]
    International Standards Organization, Guide to Expression of Uncertainty in Measurement, ISO, Geneva, (1995).Google Scholar
  88. [88]
    EURACHEM, Quantifying Uncertainty in Analytical Measurement, LGC, Teddington, UK, (1995).Google Scholar
  89. [89]
    GUM workbench, Metrodata GmbH, Germany,
  90. [90]
    H. Kipphardt, R. Matschat, O. Rienitz, D. Schiel, W. Gernand and D. Oeter, Traceability System for Elemental Analysis, Accredit. Qual. Assur., 10 (2006) 633–639.CrossRefGoogle Scholar
  91. [91]
    K.G. Heumann, S.M. Gallus, G. Radlinger and J. Vogl, Precision and Accuracy in Isotope Ratio Measurements by Plasma Source Mass Spectrometry, J. Anal. At. Spectrom., 13 (1998) 1001–1008.CrossRefGoogle Scholar
  92. [92]
    Comité consultatif pour la quantité de matière — métrologie en chimie, Sèvres, France,
  93. [93]
    J.C. Wolff, B. Dyckmans, P.D.P. Taylor and P. De Bièvre, Certification of a N-15-Enriched Nitrate Species-Specific spike Isotopic Reference Material IRMM-627, Int. J. Mass Spectrom. Ion Process., 156 (1996) 67–75.ADSCrossRefGoogle Scholar
  94. [94]
    P. De Bièvre and H.S. Peiser, Basic Equations and Uncertainties in Isotope-Dilution Mass Spectrometry for Traceability to SI of Values Obtained by This Primary Method, Fresenius J. Anal. Chem., 359 (1997) 523–525.CrossRefGoogle Scholar
  95. [95]
    I. Papadakis, P.D.P. Taylor and P. De Bièvre, SITraceable Values for Cadmium and Lead Concentration in the Candidate Reference Material, MURST-ISS A1 Antarctic Sediment, by Combination of ICP-MS with Isotope Dilution, Anal. Chim. Acta., 346 (1997) 17–22.CrossRefGoogle Scholar
  96. [96]
    I. Papadakis, C.R. Quétel, P.D.P. Taylor and P. De Bièvre, Contribution to the Certification of Cadmium and Lead Amount Content in the BCR CRM-278R Mussel Tissue by Isotope Dilution Mass Spectrometry, Accredit. Qual. Assur., 5 (2000) 198–204.CrossRefGoogle Scholar
  97. [97]
    J. Vogl, D. Liesegang, M. Ostermann, J. Diemer, M. Berglund, C.R. Quétel, P.D.P. Taylor and K. G. Heumann, Producing SI-Traceable Reference Values for Cd, Cr and Pb Amount Contents in Polyethylene Samples from the Polymer Elemental Reference Material (PERM) Project Using Isotope Dilution Mass Spectrometry, Accredit. Qual. Assur., 5 (2000) 314–324.CrossRefGoogle Scholar
  98. [98]
    A. Dobney, H. Klinkenberg, F. Souren and W. Van Borm, Uncertainty Calculations for Amount of Chemical Substance Measurements Performed by Means of Isotope Dilution Mass Spectrometry as Part of the PERM Project, Anal. Chim. Acta., 420 (2000) 89–94.CrossRefGoogle Scholar
  99. [99]
    W. Pritzkow, J. Vogl, A. Berger, K. Ecker, R. Grotzschel, P. Klingbeil, L. Persson, G. Riebe and U. Watjen, Contribution of ICP-IDMS to the Certification of Antimony Implanted in a Silicon Wafer — Comparison with RBS and INAA Results, Fresenius J. Anal. Chem., 371 (2001) 867–873.CrossRefGoogle Scholar
  100. [100]
    J.L. Love, Chemical Metrology, Chemistry and the Uncertainty of Chemical Measurements, Accredit. Qual. Assur., 7 (2002) 95–100.MathSciNetCrossRefGoogle Scholar
  101. [101]
    S. Wunderli, Uncertainty and Sampling, Accredit. Qual. Assur., 8 (2003) 90–90.CrossRefGoogle Scholar
  102. [102]
    J. Love, Untitled, Accredit. Qual. Assur., 8 (2003) 161–162.CrossRefGoogle Scholar
  103. [103]
    S. Wunderli, Untitled, Accredit. Qual. Assur., 8 (2003) 367.CrossRefGoogle Scholar
  104. [104]
    M. Thompson, Reply to the Letters to the Editor by Samuel Wunderli, Accred. Qual. Assur., 8 (2003) 90 and 367, Accredit. Qual. Assur., 9 (2004) 425–426.CrossRefGoogle Scholar
  105. [105]
    S. Wunderli, Sampling and Uncertainty — Reply to the Letters to the Editor, Accredit. Qual. Assur., 10 (2005) 255–256.CrossRefGoogle Scholar
  106. [106]
    J. Vogl, P. Klingbeil, W. Pritzkow, G. Riebe, G. Wermann, P. Turner, N. Wortel and J. Woittiez, High Resolution ICP-IDMS for Reference Material Definition Measurement, RTD-Project within the 4th Framework of the European Commission DG XII, Contract No. SMT4-CT96- 2141, (2002), p. 17Google Scholar
  107. [107]
    P. Klingbeil, Methodenentwicklung für die Präzisionsanalytik von Spurenelementen mittels Multikollektor-ICP-MS unter Anwendungder Isotopenverdünnungstechnik, Doctoral Thesis, Technische Universität Berlin, (2001).Google Scholar
  108. [108]
    H. Kipphardt, Traceability in Isotopic Measurements, in: P. De Groot (Ed.), Handbook of Stable Isotope Analytical Techniques, 1 (2004) 928–943.Google Scholar
  109. [109]
    The international System of Units (SI), Bureau International des Poids et Mesures, 7th edition, Sèvres (France), (1998).Google Scholar
  110. [110]
    A. Lamberty, W. Van Borm and Ph. Quevauviller, The Certification of Mass Fraction of As, Br, Cl, Cr, Hg, Pb and S in Two Polyethylene CRMs — BCR-680 and BCR-681, European Commission, (2001), EUR 19450 ENGoogle Scholar
  111. [111]
    D.R. Christmann and J.D. Ingle, Problems with Sub-ppb Mercury Determinations — Preservation of Standards and Prevention of Water Mist Interferences, Anal. Chim. Acta., 86 (1976) 53–62.CrossRefGoogle Scholar
  112. [112]
    S.E. Long, T.D. Martin, and E.R. Martin, Method 200.8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry, Revision 5.4, U.S. Environmental Protection Agency, Cincinnati, Ohio (1994).Google Scholar
  113. [113]
    J. Allibone, E. Fatemian and P.J. Walker, Determination of Mercury in Potable Water by ICP-MS Using Gold as a Stabilising Agent, J. Anal. At. Spectrom., 14 (1999) 235–239.CrossRefGoogle Scholar
  114. [114]
    B. T. Sturman, Comment on Determination of Mercury in Potable Water by ICP-MS Using Gold as a Stabilising Agent (J. Allibone, E. Fatemian and P. J. Walker, J. Anal. At. Spectrom., 14 (1999) 235), J. Anal. At. Spectrom., 15 (2000) 1512–1512.CrossRefGoogle Scholar
  115. [115]
    J. Diemer and K.G. Heumann, Development of an ICP-IDMS Method for Accurate Routine Analyses of Toxic Heavy Metals in Polyolefins and Comparison with Results by TI-IDMS, Fresenius J. Anal. Chem., 368 (2000) 103–108.CrossRefGoogle Scholar
  116. [116]
    Bureau International des Poids et Mesures, Consultative Committee for Amount of Substance: Key Comparison CCQM-K8, Internet Homepage:, BIPM, Paris, France.
  117. [117]
    I. Müller, Digestion and Preparation of Organic and Biological Microsamples for Ultratrace Elemental Analysis, Atom. Spectrosc., 19 (1998) 45–47.Google Scholar
  118. [118]
    K. H. Ecker, U. Watjen, A. Berger, L. Persson, W. Pritzkow, M. Radtke and H. Riesemeier, RBS, SY-XRF, INAA and ICP-IDMS of Antimony Implanted in Silicon — a Multi-Method Approach to Characterize and Certify a Reference Material, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 188 (2002) 120–125.ADSCrossRefGoogle Scholar
  119. [119]
    K.H. Ecker, U. Wätjen, A. Berger, R. Grötzschel, L. Persson, W. Pritzkow, G. Riebe and J. Vogl, Certification Report, Antimony Implanted in Silicon Wafer with a Silicon Dioxide Diffusion Barrier, Certified Reference Materials ERMEG001″, Report EUR 20125 EN, (2001).Google Scholar

Copyright information

© Metrology Society of India 2010

Authors and Affiliations

  1. 1.BAM Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations