Advertisement

Psychological Studies

, Volume 61, Issue 4, pp 307–320 | Cite as

Mindful Disintegration and the Decomposition of Self in Healthy Populations: Conception and Preliminary Study

  • Poppy L. A. SchoenbergEmail author
  • Henk P. Barendregt
Research in Progress

Abstract

The concept and quantification of ‘disintegration’ related to mindfulness were examined, i.e. attentional refinement to microscopic resolution wherein constituents of matter are decomposed into elemental units. Thus, perceptual data are synthesized less coherently. To explore this hypothesis, neural substrates of perceptual disorganization (high-frequency EEG event-related synchronization dynamics—ERD/ERS) and contextual meaning (N400 ERP) were investigated in healthy practitioners before and after a mindfulness retreat. N400 ERP amplitude attenuated, as did gamma-ERD. Shift from beta-ERD to beta-ERS was observed. These findings suggest: (1) mediated gamma-oscillations reflecting disrupted neural binding of visual representation/cohesion, (2) reduced N400 amplitude reflecting diminished extraction of contextual meaning, and (3) modulations in beta-synchrony that may serve to ‘stabilize’ cortical functioning during the transformative disintegrative process related to mindfulness, akin to a process of ‘non-reactivity’ at the cortical level. The latter may provide a candidate neural index for the construct of ‘equanimity’ within the mindfulness purview. An overarching interpretative framework of the results paralleling adaptive versus maladaptive disintegrative experience is further discussed.

Keywords

Attention training Perceptual representation Visual binding Mooney-face Contextual meaning N400 Beta Gamma Event-related (de-) synchronization (ERD/ERS) 

Notes

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO); and a Mind and Life Institute visiting scholarship. The authors gratefully thank all those who participated in the study. Much appreciation and gratitude to the Nuns, particularly Sister Cristina, for sanctioning the research to be conducted at the Monastero Clarisse Eremite, Fara in Sabina, Rome, Italy.

References

  1. Adams, J., Faux, S. F., Nestor, P. G., Shenton, M., Marcy, B., Smith, S., et al. (1993). ERP abnormalities during semantic processing in schizophrenia. Schizophrenia Research, 10(3), 247–257.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alegre, M., Labarga, A., Gurtubay, I. G., Iriarte, J., Malanda, A., & Artieda, J. (2002). Beta electroencephalograph changes during passive movements: Sensory afferences contribute to beta event-related desynchronization in humans. Neuroscience Letters, 331, 29–32.CrossRefPubMedGoogle Scholar
  3. Ataria, Y. (2015). Sense of ownership and sense of agency during trauma. Phenomenology and the Cognitive Sciences, 14(1), 199–212.CrossRefGoogle Scholar
  4. Baer, R. A., Smith, G. T., Lykins, E., Button, D., Krietemeyer, J., Sauer, S., et al. (2008). Construct validity of the five facet mindfulness questionnaire in meditating and nonmeditating samples. Assessment, 15, 329–342.CrossRefPubMedGoogle Scholar
  5. Bedford, N. J., Surguladze, S., Giampietro, V., Brammer, M. J., & David, A. S. (2012). Self-evaluation in schizophrenia: An fMRI study with implications for the understanding of insight. BMC Psychiatry, 12, 106.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bucci, P., Mucci, A., Merlotti, E., Volpe, U., & Galderisi, S. (2007). Induced gamma activity and event-related coherence in schizophrenia. Clinical EEG and Neuroscience, 38(2), 96–104.CrossRefPubMedGoogle Scholar
  7. Buddhaghosa, B. (2010). Visuddhimagga: The path of purification (trans: Nanamali, B.). Sri Lanka: Buddhist Publication Society, Kandy.Google Scholar
  8. Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31(3), 449–464.CrossRefPubMedGoogle Scholar
  9. Condray, R., Siegle, G. J., Keshavan, M. S., & Steinhauer, S. R. (2010). Effects of word frequency on semantic memory in schizophrenia: Electrophysiological evidence for a deficit in linguistic access. International Journal of Psychophysiology, 75(2), 141–156.CrossRefPubMedGoogle Scholar
  10. Daselaar, S. M., Fleck, M. S., Prince, S. E., & Cabeza, R. (2006). The medial temporal lobe distinguishes old from new independently of consciousness. The Journal of Neuroscience, 26(21), 5835–5839.CrossRefPubMedGoogle Scholar
  11. Ditman, T., & Kuperberg, G. R. (2007). The time course of building discourse coherence in schizophrenia: An ERP investigation. Psychophysiology, 44(6), 991–1001.CrossRefPubMedGoogle Scholar
  12. Dor-Ziderman, Y., Berkovich-Ohana, A., Glicksohn, J., & Goldstein, A. (2013). Mindfulness-induced selflessness: A MEG neurophenomenological study. Frontiers in Human Neuroscience, 7, 582.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of faces: Evidence from event-related brain potentials. Cognitive Brain Research, 10, 145–158.CrossRefPubMedGoogle Scholar
  14. Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.CrossRefPubMedGoogle Scholar
  15. Engel, A. K., & Fries, P. (2010). Beta-band oscillations—signalling the status quo? Current Opinion in Neurobiology, 20(2), 156–165.CrossRefPubMedGoogle Scholar
  16. Englot, D. J., Yang, L., Hamid, H., Danielson, N., Bai, X., Marfeo, A., et al. (2010). Impaired consciousness in temporal lobe seizures: Role of cortical slow activity. Brain, 133(12), 3764–3777.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fairhall, S., Kirk, I., & Hamm, J. (2007). Volition and the idle cortex: Beta oscillatory activity preceding planned and spontaneous movement. Consciousness and Cognition, 16(2), 221–228.CrossRefPubMedGoogle Scholar
  18. Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Reviews Neuroscience, 32, 209–224.CrossRefGoogle Scholar
  19. Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291, 1560–1563.CrossRefPubMedGoogle Scholar
  20. Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115–125.CrossRefPubMedGoogle Scholar
  21. Fujimoto, T., Okumura, E., Takeuchi, K., Kodabashi, A., Otsubo, T., Nakamura, K., et al. (2014). Females with schizophrenia have abnormal functional cortical connectivity in the gamma frequency during an auditory oddball task using magnetoencephalography. Open Journal of Psychiatry, 4, 24–38.CrossRefGoogle Scholar
  22. Graimann, B., & Pfurtscheller, G. (2006). Quantification and visualisation of event-related changes in oscillatory brain activity in the time-frequency domain. In C. Neuper & W. Klimesch (Eds.), Event-related dynamics of brain oscillations (Vol. 159, pp. 79–97). Amsterdam: Elsevier.CrossRefGoogle Scholar
  23. Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–484.CrossRefPubMedGoogle Scholar
  24. Grützner, C., Wibral, M., Sun, L., Rivolta, D., Singer, W., Maurer, K., et al. (2013). Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia. Frontiers in Human Neuroscience, 7, 88.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hunt, H. T. (2007). “Dark nights of the soul”: Phenomenology and neurocognition of spiritual suffering in mysticism and psychosis. Review of General Psychology, 11(3), 209–234.CrossRefGoogle Scholar
  26. Kalcher, J., & Pfurtscheller, G. (1995). Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalography and Clinical Neurophysiology, 94, 381–483. Currently Clinical Neurophysiology.Google Scholar
  27. Kiang, M., Kutas, M., Light, G. A., & Braff, D. L. (2007). Electrophysiological insights into conceptual disorganization in schizophrenia. Schizophrenia Research, 92(1–3), 225–236.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kiang, M., Kutas, M., Light, G. A., & Braff, D. L. (2008). An event-related brain potential study of direct and indirect semantic priming in schizophrenia. American Journal of Psychiatry, 165(1), 74–81.CrossRefPubMedGoogle Scholar
  29. Kiang, M., Christensen, B. K., Kutas, M., & Zipursky, R. B. (2012). Electrophysiological evidence for primary semantic memory functional organization deficits in schizophrenia. Psychiatry Research, 196(2–3), 171–180.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kiang, M., Prugh, J., & Kutas, M. (2010). An event-related brain potential study of schizotypal personality and associate semantic processing. International Journal of Psychophysiology, 75(2), 119–126.CrossRefPubMedGoogle Scholar
  31. Kostova, M., Passerieux, C., Laurent, J.-P., & Hardy-Bayle, M.-C. (2005). N400 anomalies in schizophrenia are correlated with the severity of formal thought disorder. Schizophrenia Research, 78(2–3), 285–291.CrossRefPubMedGoogle Scholar
  32. Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463–470.CrossRefPubMedGoogle Scholar
  33. Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting finding meaning in the N400 component of the event-related brain potential (ERP). Annual Reviews of Psychology, 62, 621–647.CrossRefGoogle Scholar
  34. Lutz, A., Greischar, L. L., Rawlings, N. B., Ricard, M., Davidson, R. J., & Singer, B. H. (2004). Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. PNAS, 101(46), 16369–16373.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mooney, C. M., & Ferguson, G. A. (1951). A new closure test. Canadian Journal of Psychology, 5(3), 129–133.CrossRefPubMedGoogle Scholar
  36. Neumann, M. F., & Schweinberger, S. R. (2008). N250r and N400 ERP correlates of immediate famous face repetition are independent of perceptual load. Brain Research, 1239, 181–190.CrossRefPubMedGoogle Scholar
  37. Nobre, A. C., & McCarthy, G. (1995). Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. The Journal of Neuroscience, 15(2), 1080–1089.PubMedGoogle Scholar
  38. Ohara, S., Ikeda, A., Kunieda, T., Yazawa, S., Baba, K., Nagamine, T., et al. (2000). Movement-related change of electrocorticographic activity in human supplementary motor area proper. Brain, 123(6), 1203–1215.CrossRefPubMedGoogle Scholar
  39. Panagiotaropoulos, T. I., Kapoor, V., & Logothetis, N. K. (2013). Desynchronization and rebound of beta oscillations during conscious and unconscious local neuronal processing in the macaque lateral prefrontal cortex. Frontiers in Psychology, 4, 603.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Perez-de-Albeniz, A., & Holmes, J. (2000). Meditation: Concepts, effects and uses in therapy. International Journal of Psychotherapy, 5(1), 49–58.CrossRefGoogle Scholar
  41. Pfurtscheller, G. (2001). Functional brain imaging based in ERD/ERS. Vision Research, 41, 1257–1260.CrossRefPubMedGoogle Scholar
  42. Ray, S., & Maunsell, J. H. R. (2010). Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron, 67(5), 885–896.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rodriguez, E., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 397(6718), 430–433.CrossRefPubMedGoogle Scholar
  44. Rugg, M. D. (1985). The effects of semantic priming and word repetition on event-related potentials. Psychophysiology, 22(6), 642–647.CrossRefPubMedGoogle Scholar
  45. Sayadaw, (Ven.) M. (2016). Translated and edited by the Vipassana Metta foundation translation committee. Manual of insight. Somerville: Wisdom Publications.Google Scholar
  46. Schwarzkopf, D. S., De Haas, B., & Rees, G. (2012). Better ways to improve standards in brain-behavior correlation analysis. Frontiers in Human Neuroscience, 6, 200. doi: 10.3389/fnhum.2012.00200.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schweinberger, S. R., Pfütze, E.-M., & Sommer, W. (1995). Repetition priming and associative priming of face recognition—Evidence from event-related potentials. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(3), 722–736.CrossRefGoogle Scholar
  48. Shin, K. S., Kang, D. H., Choi, J. S., Kim, Y. Y., & Kwon, J. S. (2008). Neuropsychological correlates of N400 anomalies in patients with schizophrenia: A preliminary report. Neuroscience Letters, 448(2), 226–230.CrossRefPubMedGoogle Scholar
  49. Sierra, M., & Berrios, G. (2000). The Cambridge Depersonalization Scale: A new instrument for the measurement of depersonalization. Psychiatry Research, 93, 153–164.CrossRefPubMedGoogle Scholar
  50. Singer, W. (1999). Neuronal Synchrony: A Versatile Code for the Definition of Relations? Neuron, 24(1), 49–65.CrossRefPubMedGoogle Scholar
  51. Sun, L., Castellanos, N., Grützner, C., Koethe, D., Rivolta, D., Wibral, M., et al. (2013). Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naïve, first episode schizophrenia. Schizophrenia Research, 150(2–3), 519–525.CrossRefPubMedGoogle Scholar
  52. Trujillo, L. T., Peterson, M. A., Kaszniak, A. W., & Allen, J. J. B. (2005). EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods. Clinical Neurophysiology, 116(1), 172–189.CrossRefPubMedGoogle Scholar
  53. Uhlhaas, P. J., Linden, D. E., Singer, W., Haenschel, C., Lindner, M., Maurer, K., et al. (2006). Dysfunctional long-range coordination of neural activity during gestalt perception in schizophrenia. The Journal of Neuroscience, 26(31), 8168–8175.CrossRefPubMedGoogle Scholar
  54. Uhlhaas, P. J., & Mishara, A. I. (2007). Perceptual anomalies in schizophrenia: Integrating phenomenology and cognitive neuroscience. Schizophrenia Bulletin, 33, 142–156.CrossRefPubMedGoogle Scholar
  55. Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., et al. (2009). Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Uhlhaas, P. J., & Silverstein, S. M. (2005). Perceptual organization in schizophrenia spectrum disorders: Empirical research and theoretical implications. Psychological Bulletin, 131, 618–632.CrossRefPubMedGoogle Scholar
  57. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11, 100–113.CrossRefPubMedGoogle Scholar
  58. Van Elst, L. T., Baeumer, D., Lemieux, L., Woermann, F. G., Koepp, M., Krishnamoorthy, S., et al. (2002). Amygdala pathology in psychosis of epilepsy: A magnetic resonance imaging study in patients with temporal lobe epilepsy. Brain, 125(1), 140–149.CrossRefGoogle Scholar
  59. Williams, S., & Boksa, P. (2010). Gamma oscillations and schizophrenia. Journal of Psychiatry and Neuroscience, 35(2), 75–77.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© National Academy of Psychology (NAOP) India 2016

Authors and Affiliations

  • Poppy L. A. Schoenberg
    • 1
    • 2
    Email author
  • Henk P. Barendregt
    • 2
  1. 1.Department of Medicine, Division of Preventive & Behavioral MedicineCenter for Mindfulness, University of Massachusetts Medical SchoolShrewsburyUSA
  2. 2.Faculty of Science, Intelligent SystemsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations