Skip to main content

Advertisement

Log in

Glial Response to Intranasal Mesenchymal Stem Cells in Intermittent Cuprizone Model of Demyelination

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Intranasal mesenchymal stem cells (MSCs) delivery is a non-invasive method that has received interests for treatment of neurodegenerative diseases, such as multiple sclerosis (MS). The impact of intranasal MSCs on intermittent cuprizone model of demyelination was a focus of this study. C57/BL6 mice were fed with 0.3% cuprizone in an intermittent or single ways. Luxol fast blue (LFB), Rotarod test, quantitative real‐time polymerase chain reaction (qRT-PCR), immunohistochemistry and western blot (WB) were used for interpretation of outcomes. MSCs effectively homed to the corpus callosum area, were able to improve motor coordination and to promote myelin recovery in the intermittent cuprizone (INTRCPZ/MSCs). Astrogliosis (GFAP+ cells) and microgliosis (Iba-1+ cells) were hampered, and more mature oligodendrocyte cells (APC+ cells) were identified in mice receiving INTRCPZ/MSCs. Such treatment also considerably reduced markers related to the macrophage type 1 (M1) cells, namely iNOS and CD86, but it recovered the M2 markers MRC-1 and TREM-2. In addition, a remarkable decrease in the expressions of pro-inflammatory IL-1β and TNFα but an increase in the rate of anti-inflammatory TGF-β and IL-10 were identified in mice that underwent INTRCPZ/MSCs therapy. Finally, microvascular changes were evaluated, and a noticeable increase in the expression of the endothelial cell marker CD31 was found in the INTRCPZ/MSCs-treated mice (p < 0.05 for all). The outcomes are representative of the efficacy of intranasal MSCs delivery in intermittent cuprizone model of MS for reshaping macrophage polarity along with modification of glial, inflammatory, and angiogenic markers in favor of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  • Aguilera Y, Mellado-Damas N, Olmedo-Moreno L et al (2021) Preclinical safety evaluation of intranasally delivered human mesenchymal stem cells in juvenile mice. Cancers 13(5):1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadian-Moghadam H, Sadat-Shirazi M-S, Zarrindast M-R (2020) Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotech Lett 42(7):1073–1101

    Article  CAS  Google Scholar 

  • Araujo MR, Carvalho PH, Paula TSD et al (2016) Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

  • Barati S, Ragerdi Kashani I, Moradi F et al (2019) Mesenchymal stem cell mediated effects on microglial phenotype in cuprizone-induced demyelination model. J Cell Biochem 120(8):13952–13964

    Article  CAS  PubMed  Google Scholar 

  • Bian X, Ma K, Zhang C et al (2019) Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther 10(1):1–18

    Article  CAS  Google Scholar 

  • Boda E, Di Maria S, Rosa P et al (2015) Early phenotypic asymmetry of sister oligodendrocyte progenitor cells after mitosis and its modulation by aging and extrinsic factors. Glia 63(2):271–286

    Article  PubMed  Google Scholar 

  • Brown RA, Narayanan S, Arnold DL (2014) Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. NeuroImage Clin 6:20–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschmann JP, Berger K, Awad H et al (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci 48(1):66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butti E, Bacigaluppi M, Chaabane L et al (2019) Neural stem cells of the subventricular zone contribute to neuroprotection of the corpus callosum after cuprizone-induced demyelination. J Neurosci 39(28):5481–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielyan L, Schäfer R, von Ameln-Mayerhofer A et al (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88(6):315–324

    Article  CAS  PubMed  Google Scholar 

  • Durafourt BA, Moore CS, Zammit DA et al (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60(5):717–727

    Article  PubMed  Google Scholar 

  • Gong D, Shi W, Yi S-J et al (2012) TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol 13(1):1–10

    Article  Google Scholar 

  • Grube M, Holler E, Weber D et al (2016) Risk factors and outcome of chronic graft-versus-host disease after allogeneic stem cell transplantation—results from a single-center observational study. Biol Blood Marrow Transplant 22(10):1781–1791

    Article  PubMed  Google Scholar 

  • Hong H, Tian XY (2020) The role of macrophages in vascular repair and regeneration after ischemic injury. Int J Mol Sci 21(17):6328

    Article  CAS  PubMed Central  Google Scholar 

  • Islam MS, Tatsumi K, Okuda H et al (2009) Olig2-expressing progenitor cells preferentially differentiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem Int 54(3–4):192–198

    Article  CAS  PubMed  Google Scholar 

  • Johnson ES, Ludwin S (1981) The demonstration of recurrent demyelination and remyelination of axons in the central nervous system. Acta Neuropathol 53(2):93–98

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann T, Miron V, Cuo Q et al (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131(7):1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Ding Y, Zhang Y et al (2014) Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant 23(9):1045–1059

    Article  PubMed  Google Scholar 

  • Loma I, Heyman R (2011) Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol 9(3):409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv J, Zeng Y, Qian Y et al (2018) MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res 1685:91–104

    Article  CAS  PubMed  Google Scholar 

  • Madadi S, Pasbakhsh P, Tahmasebi F et al (2019) Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metab Brain Dis 34(2):593–603

    Article  CAS  PubMed  Google Scholar 

  • Mansoor SR, Zabihi E, Ghasemi-Kasman M (2019) The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci 235:116830

    Article  CAS  PubMed  Google Scholar 

  • Messori L, Casini A, Gabbiani C et al (2007) Unravelling the chemical nature of copper cuprizone. Dalton Trans 21:2112–2114

    Article  Google Scholar 

  • Mortezaee K, Khanlarkhani N, Sabbaghziarani F et al (2017) Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res 369(2):303–312

    Article  CAS  PubMed  Google Scholar 

  • Mortezaee K, Pasbakhsh P, Kashani IR et al (2016) Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran Biomed J 20(4):207

    PubMed  PubMed Central  Google Scholar 

  • Nicholson M, Wood RJ, Fletcher JL et al (2018) BDNF haploinsufficiency exerts a transient and regionally different influence upon oligodendroglial lineage cells during postnatal development. Mol Cell Neurosci 90:12–21

    Article  CAS  PubMed  Google Scholar 

  • Noh MY, Lim SM, Oh K-W et al (2016) Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl Med 5(11):1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppliger B, Joerger-Messerli M, Mueller M et al (2016) Intranasal delivery of umbilical cord-derived mesenchymal stem cells preserves myelination in perinatal brain damage. Stem Cells Dev 25(16):1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434

    Article  PubMed  Google Scholar 

  • Prineas J, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez EG, Wegner C, Kreutzfeldt M et al (2014) Oligodendroglia in cortical multiple sclerosis lesions decrease with disease progression, but regenerate after repeated experimental demyelination. Acta Neuropathol 128(2):231–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolak LA (2003) Multiple sclerosis: it’s not the disease you thought it was. Clin Med Res 1(1):57–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Salem AM, Ahmed HH, Atta HM et al (2014) Potential of bone marrow mesenchymal stem cells in management of Alzheimer’s disease in female rats. Cell Biol Int 38(12):1367–1383

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228–234

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Awad H, Slowik A et al (2013) Regional heterogeneity of cuprizone-induced demyelination: topographical aspects of the midline of the corpus callosum. J Mol Neurosci 49(1):80–88

    Article  CAS  PubMed  Google Scholar 

  • Ślusarczyk J, Trojan E, Głombik K et al (2018) Targeting the NLRP3 inflammasome-related pathways via tianeptine treatment-suppressed microglia polarization to the M1 phenotype in lipopolysaccharide-stimulated cultures. Int J Mol Sci 19(7):1965

    Article  PubMed Central  Google Scholar 

  • Sun J, Wei ZZ, Gu X et al (2015) Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 272:78–87

    Article  CAS  PubMed  Google Scholar 

  • Tahmasebi F, Pasbakhsh P, Mortezaee K et al (2019) Effect of the CSF1R inhibitor PLX3397 on remyelination of corpus callosum in a cuprizone-induced demyelination mouse model. J Cell Biochem 120(6):10576–10586

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Tejedor LS, Berner G, Jacobsen K et al (2015) Mesenchymal stem cells do not exert direct beneficial effects on CNS remyelination in the absence of the peripheral immune system. Brain Behav Immun 50:155–165

    Article  Google Scholar 

  • Uccelli A, Laroni A, Freedman MS (2011) Mesenchymal stem cells for the treatment of multiple sclerosis and other neurological diseases. Lancet Neurol 10(7):649–656

    Article  CAS  PubMed  Google Scholar 

  • Van Velthoven CT, Kavelaars A, Van Bel F et al (2010) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68(5):419–422

    PubMed  Google Scholar 

  • Wei N, Yu SP, Gu X et al (2013) Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant 22(6):977–991

    Article  PubMed  Google Scholar 

  • Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287(5457):1442–1446

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Yang R, Biswas S et al (2018) Neural stem cell-based regenerative approaches for the treatment of multiple sclerosis. Mol Neurobiol 55(4):3152–3171

    Article  CAS  PubMed  Google Scholar 

  • Zarini D, Pasbakhsh P, Nekoonam S et al (2021) Protective features of calorie restriction on cuprizone-induced demyelination via modulating microglial phenotype. J Chem Neuroanat 116:102013

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Wang H, Wang X et al (2016) TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7(32):52294

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Zhong R, Li S et al (2017) Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer’s disease mice and wild-type littermates. Front Aging Neurosci 9:282

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Tehran University of Medical Sciences (grant number: 99–2-140–49479).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed distinctly in the presented work. Conceptualization and study designing, Iraj Ragerdi Kashani, Keywan Mortezae and Parichehr Pasbakhsh; Performing Experiments and data interpretation, Davood Zarini and Iraj Ragerdi Kashani; writing, original draft preparation, Davood Zarini, Sina Mojaverrostami and Maedeh Hashemi; review and editing, Shiva Amirizadeh, Jamal Majidpoor and Ameneh Omidi. Authors have read and agreed to publish of the manuscript.

Corresponding authors

Correspondence to Keywan Mortezaee or Iraj Ragerdi Kashani.

Ethics declarations

Ethics Approval

All animal-related procedures, including anesthesia and surgery, were carried out according to the national and institutional guidelines of Tehran University of Medical Science for use and care of animals in the laboratory (ethical approval code: IR.TUMS.MEDICINE.REC.1399.237).

Consent for Publication

The authors of the paper have read and approved and consent the final version for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarini, D., Pasbakhsh, P., Shabani, M. et al. Glial Response to Intranasal Mesenchymal Stem Cells in Intermittent Cuprizone Model of Demyelination. Neurotox Res 40, 1415–1426 (2022). https://doi.org/10.1007/s12640-022-00556-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00556-w

Keywords

Navigation