Skip to main content
Log in

Evaluation of Cytotoxic, Necrotic, Apoptotic, and Autophagic Effects of Methamphetamine and 3,4-Methylenedioxymethamphetamine on U-87 MG (Glial) and B104-1–1 (Neuronal) Cell Lines

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) are empathogen (entactogen) psychoactive designer drugs which are mainly used for recreational purposes. Both MA and MDMA are central nervous system stimulants which are classified as monoamine neurotransmitter reuptake inhibitors. They have strong cytotoxic effects on dopaminergic and serotonergic neurons. Neurotoxicities of MA and MDMA by glial activation have been shown. The present work has investigated and measured cytotoxic, necrotic and apoptotic, and autophagic effects of MA and MDMA on U-87 MG (glial) and B104-1–1 (neuronal) cell lines by janus green, ethidium bromide/acridine orange, and monodansylcadaverine/propidium iodide staining to evaluate and compare their effects on glial and neuronal cells, respectively. The results of the present work showed that: (1) MDMA induced more potent mitochondrial toxicity, stronger necrotic and autophagic effects than MA in both B104-1–1 (neuronal) and U-87 MG (glial) cell lines; (2) although MDMA induced stronger apoptotic effect than MA on U-87 MG cell line, it had equal apoptotic effect on B104-1–1 cell line with MA; and (3) MDMA induced more potent mitochondrial toxicity, stronger necrotic, apoptotic, and autophagic effects than MA in B104-1–1 cell line than U-87 MG cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad F, Alamoudi W, Haque S, Salahuddin M, Alsamman K (2018) Simple, reliable, and time-efficient colorimetric method for the assessment of mitochondrial function and toxicity. Bosn J Basic Med Sci 18(4):367–374

    Article  CAS  Google Scholar 

  • Biederbick A, Kern HF, Elsässer HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66(1):3–14

    CAS  PubMed  Google Scholar 

  • Chan LL-Y, Shen D, Wilkinson AR, Patton W, Lai N, Chan E, Kuksin D, Lin B, Qiu J (2012) A novel image-based cytometry method for autophagy detection in living cells. Autophagy 8(9):1371–1382

    Article  CAS  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36:1–22

    Article  CAS  Google Scholar 

  • D’Brant LY, Desta H, Khoo TC, Sharikova AV, Mahajan SD, Khmaladze A (2019) Methamphetamine-induced apoptosis in glial cells examined under marker-free imaging modalities. J Biomed Opt 24(4):046503

    Article  Google Scholar 

  • Foroughi K, Jahanbani S, Khaksari M, Shayannia A (2020) Obestatin attenuated methamphetamine-induced PC12 cells neurotoxicity via inhibiting autophagy and apoptosis. Hum Exp Toxicol 39(3):301–310

    Article  CAS  Google Scholar 

  • Freshney RI (2016) Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons Inc, Hoboken

    Google Scholar 

  • Guerreiro DF, Carmo AL, da Silva JA, Navarro R, Góis C (2011) Club drugs. Acta Med Port 24(5):739–756

    CAS  PubMed  Google Scholar 

  • Halpin LE, Collins SA, Yamamoto BK (2014) Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 97(1):37–44

    Article  CAS  Google Scholar 

  • Henderson GL (1997) Designer drugs. In: Brandenberger H, Maes RAA (eds) Analytical toxicology for clinical, forensic and pharmaceutical chemists, 1st edn. De Gruyter, New York, pp 685–704

    Chapter  Google Scholar 

  • Jayanthi S, Deng X, Noailles P-AH, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18(2):238–251

    Article  CAS  Google Scholar 

  • Johnson ID, Spence MTZ (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies. Invitrogen, Eugene

  • Li I-H, Ma K-H, Weng S-J, Huang S-S, Liang C-M, Huang Y-S 2014 Autophagy activation is involved in 3,4-methylenedioxymethamphetamine (‘ecstasy’)-induced neurotoxicity in cultured cortical neurons. PLoS One 9(12):e116565

  • Mercer LD, Higgins GC, Lau CL, Lawrence AJ, Beart PM (2017) MDMA-induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochem Int 105:80–90

    Article  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326

    Article  CAS  Google Scholar 

  • Moffat AC, Osselton MD, Widdop B (2011) Clarke’s analysis of drugs and poisons in pharmaceuticals, body fluids and postmortem material. Pharmaceutical Press, London

    Google Scholar 

  • Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Prog Neurobiol 155:149–170

    Article  CAS  Google Scholar 

  • Moser VC, Aschner M, Richardson JR, Bowman AB, Richardson RJ (2019) Toxic responses of the nervous system. In: Klaassen CD (ed) Casarett and Doull’s toxicology, The basic science of poisons, 9th edn. McGraw-Hill Education, New York, pp 839–875

    Google Scholar 

  • Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E (2003) Different glial response to methamphetamine and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn-Schmiedeberg’s Arch Pharmacol 367:490–499

    Article  CAS  Google Scholar 

  • Puerta E, Aguirre N (2011) Methylenedioxymethamphetamine (MDMA, ‘ecstasy’): neurodegeneration versus neuromodulation. Pharmaceuticals 4:992–1018

    Article  CAS  Google Scholar 

  • Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12

    Article  Google Scholar 

  • Roberts CA, Jones A, Montgomery C (2016) Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users. Neurosci Biobehav Rev 63:158–167

    Article  CAS  Google Scholar 

  • Schiavone S, Neri M, Maffione AB, Frisoni P, Morgese MG, Trabace L, Turillazzi E (2019) Increased iNOS and nitrosative stress in dopaminergic neurons of MDMA-exposed rats. Int J Mol Sci 20:1242

    Article  CAS  Google Scholar 

  • Shaerzadeh F, Streit WJ, Heysieattalab S, Khoshbouei H (2018) Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflammation 15:341

    Article  CAS  Google Scholar 

  • Shetab-Boushehri SV, Tamimi M, Kebriaeezadeh A (2009) Quantitative determination of 3,4-methylenedioxymethamphetamine by thin-layer chromatography in ecstasy illicit pills in Tehran. Toxicol Mech Methods 19(9):565–569

    Article  Google Scholar 

  • Shetab-Boushehri SM-H, Hosseini A, Rafinejad J, Ebadollahi-Natanzi A, Shetab-Boushehri SV (2022) Cytotoxic, necrotic, apoptotic, and autophagic properties of venom sac extract of Vespa orientalis in T47D and MCF10A breast cell lines. Toxin Reviews 41(1).https://doi.org/10.1080/15569543.2021.2007404

  • Smith SM, Ribble D, Goldstein NB, Norris DA, Shellman YG (2012) A simple technique for quantifying apoptosis in 96-well plates. In: Conn PM (ed) Laboratory methods in cell biology. Methods in cell biology, vol. 112, Elsevier, Amsterdam, pp 361–368

  • Va´zquez CL, Colombo MI (2009) Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. In: Klionsky DJ (ed) Autophagy in mammalian systems, Part B. Methods in enzymology, vol. 452, Academic Press, New York, pp 361–368

  • von Jagow R, Kampffmeyer H, Kinese M (1965) The preparation of microsomes. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 251:73–87

    Article  CAS  Google Scholar 

  • Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, He J, Liao L, Xiong K, Yi C-X, Yan J (2018) The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Front Mol Neurosci 11:186

    Article  Google Scholar 

  • Zakeri Z, Melendez A, Lockshin RA (2008) Detection of autophagy in cell death. In: Khosravi-Far R, Zakeri Z, Lockshin RA, Piacentini M (eds) Programmed cell death, general principles for: studying cell death, part A, methods in enzymology, vol 442. Academic Press, New York, pp 289–306

    Chapter  Google Scholar 

  • Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236(2):302–308

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by Iran University of Medical Sciences & Health Services (Grant no. 14776, January 19, 2020).

Author information

Authors and Affiliations

Authors

Contributions

1) Dr. Asieh Hosseini cultured the cell lines, wrote the Introduction and Materials & Methods of the manuscript, and plotted some graphs. 2) Mr. Seyed Mohammad-Hossein Shetab-Boushehri helped in preparation of solutions and reagents, measurement of protein concentration, photography from the cells, and plotting some graphs. 3) Dr. Seyed Vahid Shetab-Boushehri incubated the cell lines with methamphetamine and MDMA, measured cytotoxicity, necrosis, apoptosis, and autophagy, and wrote Results and Discussion of the Manuscript.

Corresponding author

Correspondence to Seyed Vahid Shetab-Boushehri.

Ethics declarations

Ethics Approval

The study was ethically approved by Iran University of Medical Sciences ethics committee and performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments (Approval ID: IR.IUMS.REC.1398.1093).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A., Shetab-Boushehri, S.MH. & Shetab-Boushehri, S.V. Evaluation of Cytotoxic, Necrotic, Apoptotic, and Autophagic Effects of Methamphetamine and 3,4-Methylenedioxymethamphetamine on U-87 MG (Glial) and B104-1–1 (Neuronal) Cell Lines. Neurotox Res 40, 1499–1515 (2022). https://doi.org/10.1007/s12640-022-00543-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00543-1

Keywords

Navigation