Skip to main content

Advertisement

Log in

Tramadol and Codeine Stacking/Boosting Dose Exposure Induced Neurotoxic Behaviors, Oxidative Stress, Mitochondrial Dysfunction, and Neurotoxic Genes in Adolescent Mice

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In spite of the increasing epidemic of pharmaceutical opioids (codeine and tramadol) misuse and abuse among the adolescents, little is known about the neurotoxic consequences of the widespread practice of tramadol and codeine abuse involving increasing multiple doses across days, referred to as stacking and boosting. Hence, in this study, we replicated stacking and boosting doses of tramadol, codeine alone, or in combination on spontaneous motor activity and cognitive function in adolescent mice and adduced a plausible mechanism of possible neurotoxicity. Ninety-six adolescent mice were randomly distributed into 4 groups (n = 24 per group) and treated thrice daily for 9 days with vehicle, tramadol (20, 40, or 80 mg/kg), codeine (40, 80, or 160 mg/kg), or their combinations. Exposure of mice to tramadol induced hyperactivity and stereotypic behavior while codeine exposure caused hypoactivity and nootropic effect but tramadol-codeine cocktail led to marked reduction in spontaneous motor activity and cognitive function. In addition, tramadol, codeine, and their cocktail caused marked induction of nitroso-oxidative stress and inhibition of mitochondrial complex I activity in the prefrontal cortex (PFC) and midbrain (MB). Real-time PCR expression profiling of genes encoding neurotoxicity (RT) showed that tramadol exposure upregulate 57 and downregulate 16 neurotoxic genes, codeine upregulate 45 and downregulate 25 neurotoxic genes while tramadol-codeine cocktail upregulate 52 and downregulate 20 neurotoxic genes in the PFC. Findings from this study demonstrate that the exposure of adolescents mice to multiple and increasing doses of tramadol, codeine, or their cocktail lead to spontaneous motor coordination deficits indicative of neurotoxicity through induction of oxidative stress, inhibition of mitochondrial complex I activity and upregulation of neurotoxicity encoding genes in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achukwu PU, Omorodion NT, Tosan E, Aloh HE, Eze C, Okoyeocha OME (2019) Codeine and its histopathological effect on brain of albino rats: an experimental study. Acta Scientific Nutr Health 3(2):125–133

    Google Scholar 

  • Arora S, Herbert ME (2001) Myth: codeine is a powerful and effective analgesic. West J Med 174(6):428. https://doi.org/10.1136/ewjm.174.6.428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awadalla EA, Salah-Eldin A (2015) Histopathological and molecular studies on tramadol mediated hepato-renal toxicity in rats. IOSR J Pharm Biol Sci 10(6):90–102

    Google Scholar 

  • Azmy SM, Abd El Fattah MA, Abd El-Rahman SS et al (2018) Does nicotine impact tramadol abuse? Insights from neurochemical and neurobehavioral changes in mice. Neurotoxicology 67:245–258

  • Baldacchino A, Tolomeo S, Balfour DJ, Matthews K (2019) Profiles of visuospatial memory dysfunction in opioid-exposed and dependent populations. Psychol Med 49(7):1174–1184. https://doi.org/10.1017/S0033291718003318

    Article  CAS  PubMed  Google Scholar 

  • Bameri B, Shaki F, Ahangar N, Ataee R, Samadi M, Mohammadi H (2018) Evidence for the involvement of the dopaminergic system in seizure and oxidative damage induced by tramadol. Int J Toxicol 37(2):164–170

    Article  CAS  PubMed  Google Scholar 

  • Barakat A (2019) Revisiting tramadol: a multi-modal agent for pain management. CNS Drugs 33(5):481–501

    Article  CAS  PubMed  Google Scholar 

  • Basit F, van Oppen LM, Schöckel L et al (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8(3):e2716

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassiony MM, Youssef UM, Hassan MS et al (2017) Cognitive impairment and tramadol dependence. J Clin Psychopharmacol 37(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • Beltrán-Camposa V, Silva-Veraa M, García-Camposa ML, Díaz-Cintrab S (2015) Effects of morphine on brain plasticity. Neurologia 30:176–180

    Google Scholar 

  • Capuron L, Schroecksnadel S, Feart C, Aubert A, Higueret D, Barberger-Gateau P, Laye S, Fuchs D (2011) Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatr 70(2):175–182

    Article  CAS  Google Scholar 

  • Dhull DK, Kumar A (2018) Tramadol ameliorates behavioural, biochemical, mitochondrial and histological alterations in ICV-STZ-induced sporadic dementia of Alzheimer’s type in rats. Inflammopharmacology 26(4):925–938. https://doi.org/10.1007/s10787-017-0431-3. Epub 2017 Dec 16. PMID: 29249049

  • Dutta S, Sengupta P (2016) Men and mice: Relating their ages. Life Sci 152:244–248

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Schrott LM, Arnold T, Snelling S, Rao M, Graham D, Cornelius A, Korneeva NL. (2018) Chronic oxycodone induces axonal degeneration in rat brain. BMC Neurosci 19(1):15. https://doi.org/10.1186/s12868-018-0417-0. PMID: 29571287; PMCID: PMC5865283

  • Fischer B, Argento E (2012) Prescription opioid related misuse, harms, diversion and interventions in Canada: a review. Pain Physician 15(3 Suppl):ES191-ES203

  • Folarin OR, Adaramoye OA, Akanni OO, Olopade JO (2018) Changes in the brain antioxidant profile after chronic vanadium administration in mice. Metab Brain Dis 33(2):377–385

    Article  CAS  PubMed  Google Scholar 

  • Franco-Iborra S, Cuadros T, Parent A, Romero-Gimenez J, Vila M, Perier C (2018) Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell Death Dis 9(11):1122

    Article  PubMed  PubMed Central  Google Scholar 

  • Galkin A (2019) Brain ischemia/reperfusion injury and mitochondrial complex I damage Biochemistry (Mosc) 84(11):1411–1423

  • Gallimberti L, Buja A, Chindamo S et al (2015) Prevalence of substance use and abuse in late childhood and early adolescence: what are the implications? Prev Med Rep 2:862–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghoneim FM, Khalaf HA, Elsamanoudy AZ, Helaly AN (2014) Effect of chronic usage of tramadol on motor cerebral cortex and testicular tissues of adult male albino rats and the effect of its withdrawal: histological, immunohistochemical and biochemical study. Int J Clin Exp Pathol 7(11):7323–7341

    PubMed  PubMed Central  Google Scholar 

  • Gilson AM, Kreis PG (2009) The burden of the nonmedical use of prescription opioid analgesics. Pain Med 10(Suppl 2):S89–S100

    Article  PubMed  Google Scholar 

  • Gómez-Palacio-Schjetnan A, Escobar ML (2013) Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci 15:117–136

    Article  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinet 43(13):879–923

    Article  CAS  PubMed  Google Scholar 

  • Han B, Compton WM, Blanco C, Crane E, Lee J, Jones CM (2017) Prescription opioid use, misuse, and use disorders in U.S. adults: 2015 National Survey on Drug Use and Health. Ann Intern Med 167(5):293–301

    Article  PubMed  Google Scholar 

  • Helmerhorst GT, Teunis T, Janssen SJ, Ring D (2017) An epidemic of the use, misuse and overdose of opioids and deaths due to overdose, in the United States and Canada: is Europe next?. Bone Joint J 99-B(7):856–864

  • Hussein A, Askar E, Badawy A, Saad K, Zahran A, Elderwy AA (2017) Impact of cytokine genetic polymorphisms on the risk of renal parenchymal infection in children. J Pediatr Urol 13(6):593.e1-593.e10. https://doi.org/10.1016/j.jpurol.2017.05.025. Epub 2017 Jul 3. PMID: 28716390

  • Hussein OA, Abdel Mola AF, Rateb A (2020) Tramadol administration induced hippocampal cells apoptosis, astrogliosis, and microgliosis in juvenile and adult male mice, histological and immunohistochemical study. Ultrastruct Pathol 44(1):81–102. https://doi.org/10.1080/01913123.2019.1711480. Epub 2020 Jan 10. PMID: 31924115

  • Imtiaz S, Shield KD, Fischer B, Rehm J (2014) Harms of prescription opioid use in the United States. Subst Abuse Treat Prev Policy 9:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishola IO, Adamson FM, Adeyemi OO (2017) Ameliorative effect of kolaviron, a biflavonoid complex from Garcinia kola seeds against scopolamine-induced memory impairment in rats: role of antioxidant defense system. Metab Brain Dis 32(1):235–245

    Article  CAS  PubMed  Google Scholar 

  • Ishola IO, Akinyede AA, Sholarin AM (2014) Antidepressant and anxiolytic properties of the methanolic extract of Momordica charantia Linn (Cucurbitaceae) and its mechanism of action. Drug Res (stuttg) 64(7):368–376

    CAS  Google Scholar 

  • Ishola IO, Jacinta AA, Adeyemi OO (2019) Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab Brain Dis 34(4):979–989

    Article  CAS  PubMed  Google Scholar 

  • Jacobson ML, Wulf HA, Browne CA, Lucki I (2018) Opioid modulation of cognitive impairment in depression. Prog Brain Res 239:1–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Khattab MM, El-Hadiyah TM, Al-Shabanah OA, Raza M (2004) Modification by L-NAME of codeine induced analgesia: possible role of nitric oxide. Receptors Channels 10(5–6):139–145

    Article  CAS  PubMed  Google Scholar 

  • Kidorf M, Solazzo S, Yan H, Brooner RK (2018) Psychiatric and substance use comorbidity in treatment-seeking injection opioid users referred from syringe exchange. J Dual Diagn 14(4):193–200

    Article  PubMed  Google Scholar 

  • Kimura M, Obata H, Saito S (2012) Antihypersensitivity effects of tramadol hydrochloride in a rat model of postoperative pain. Anesth Analg 115(2)

  • Larson JJ, Graham DL, Singer LT et al (2019) Cognitive and behavioral impact on children exposed to opioids during pregnancy. Pediatrics 144(2):e20190514

    Article  PubMed  Google Scholar 

  • Liljequist R (1981) Codeine-induced memory changes: nature and relationship to opiate system. Eur J Clin Pharmacol 20(2):99–107. https://doi.org/10.1007/BF00607144

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Ma Y, Zhang N (2018) Development of brain-wide connectivity architecture in awake rats. Neuroimage 176:380–389

    Article  PubMed  Google Scholar 

  • MacLean KA, Johnson MW, Reissig CJ, Prisinzano TE, Griffiths RR (2013) Dose-related effects of salvinorin A in humans: dissociative, hallucinogenic, and memory effects. Psychopharmacology 226(2):381–392

    Article  CAS  PubMed  Google Scholar 

  • Miotto K, Cho AK, Khalil MA, Blanco K, Sasaki JD, Rawson R (2017) Trends in tramadol: pharmacology, metabolism, and misuse. Anesth Analg 124(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HM, Mahmoud AM (2019) Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed Pharmacother 110:239–247. https://doi.org/10.1016/j.biopha.2018.11.141. Epub 2018 Nov 30. PMID: 30508735

    Article  CAS  PubMed  Google Scholar 

  • Mohamed TM, Ghaffar HM, El Husseiny RM (2015) Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes. Toxicol Ind Health 31(12):1325-33. https://doi.org/10.1177/0748233713491814

  • Moretti M, Belli G, Morini L, Monti MC, Osculati AMM, Visonà SD (2019) Drug Abuse-Related Neuroinflammation in Human Postmortem Brains: An Immunohistochemical Approach. J Neuropathol Exp Neurol 78(11):1059-1065. https://doi.org/10.1093/jnen/nlz084. PMID: 31559425. National Institutes of Health. Guide for the Care and Use of Laboratory Animals, eight edition, DHHS, PHS. NIHPublication No. 85- 23 (2002 Revised)

  • Nafea OE, ElKhishin IA, Awad OA, Mohamed DA (2016) A study of the neurotoxic effects of tramadol and cannabis in adolescent male albino rats. Int J Scientific Rep 2(7):143–154

  • Proctor SL, Estroff TW, Empting LD, Shearer-Williams S, Hoffmann NG (2013) Prevalence of substance use and psychiatric disorders in a highly select chronic pain population. J Addict Med 7(1):17–24

    Article  PubMed  Google Scholar 

  • Raj K, Chawla P, Singh S (2019) Neurobehavioral consequences associated with long term tramadol utilization and pathological mechanisms. CNS Neurol Disord Drug Targets 18(10):758–768

    Article  CAS  PubMed  Google Scholar 

  • Sadat-Shirazi MS, Zarrindast MR, Ashabi G (2020) Oxidative stress enzymes are changed in opioid abusers and multidrug abusers. J Clin Neurosci 72:365–369

    Article  CAS  PubMed  Google Scholar 

  • Shadnia S, Brent J, Mousavi-Fatemi K, Hafezi P, Soltaninejad K (2012) Recurrent seizures in tramadol intoxication: implications for therapy based on 100 patients. Basic Clin Pharmacol Toxicol 111(2):133–136

    CAS  PubMed  Google Scholar 

  • Sharma LK, Lu J, Bai Y (2009) Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 16(10):1266–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strain EC (2002) Assessment and treatment of comorbid psychiatric disorders in opioid-dependent patients. Clin J Pain 18(4 Suppl):S14–S27

    Article  PubMed  Google Scholar 

  • Tamatam A, Khanum F, Bawa AS (2012) Genetic biomarkers of depression. Ind J Human Genetics 18(1):20–33

    Article  CAS  Google Scholar 

  • Trivedi M, Shaikh S, Gwinnut C (2007) Pharmacology of Opioids. Update Anesth 118–124

  • van Amsterdam J, van den Brink W (2015) The misuse of prescription opioids: a threat for Europe? Curr Drug Abuse Rev 8(1):3–14

    Article  PubMed  Google Scholar 

  • Volkow N, Benveniste H, McLellan AT (2018) Use and misuse of opioids in chronic pain. Annu Rev Med 69:451–465

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Ma T, Cheng Y et al (2018) Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict Biol 23(2):569–584

    Article  CAS  PubMed  Google Scholar 

  • Wetherill R, Tapert SF (2013) Adolescent brain development, substance use, and psychotherapeutic change. Psychol Addict Behav 27(2):393–402

    Article  PubMed  Google Scholar 

  • World Health Organization (2018) Critical review report: tramadol. Expert Committee on Drug Dependence Forty-first Meeting. 1–50

  • Zhuo HQ, Huang L, Huang HQ, Cai Z (2012) Effects of chronic tramadol exposure on the zebrafish brain: a proteomic study. J Proteomics 75(11):3351-64. https://doi.org/10.1016/j.jprot.2012.03.038. Epub 2012 Apr 9. PMID: 22507199

Download references

Acknowledgements

Research reported in this publication was supported by the Fogarty International Center of the National Institutes of Health under Award Number D43TW010134. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

IOI and NUO conceived and designed this study. IOI, SUE, AJA, IOA, and ORF conducted the experiments and data analysis, IOI, SUE, JOO, IOA, and NUO interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to I. O. Ishola.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishola, I.O., Eneanya, S.U., Folarin, O.R. et al. Tramadol and Codeine Stacking/Boosting Dose Exposure Induced Neurotoxic Behaviors, Oxidative Stress, Mitochondrial Dysfunction, and Neurotoxic Genes in Adolescent Mice. Neurotox Res 40, 1304–1321 (2022). https://doi.org/10.1007/s12640-022-00539-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00539-x

Keywords

Navigation