Skip to main content

Bupivacaine Induces ROS-Dependent Autophagic Damage in DRG Neurons via TUG1/mTOR in a High-Glucose Environment

Abstract

Bupivacaine (BP) is a commonly clinically used local anesthetic (LA). Current studies suggest that neurological complications are increased in diabetic patients after LA application, but the molecular mechanism is poorly understood. LA-induced autophagy and neuronal injury have been reported. We hypothesized that a high-glucose environment aggravates BP-induced autophagic damage. Mouse dorsal root ganglion (DRG) neurons were treated with BP in a high-glucose environment, and the results showed that reactive oxygen species (ROS) levels increased, autophagy was activated, autophagy flux was blocked, and cell viability decreased. Pretreatment with the ROS scavenger N-acetyl-cysteine (NAC) attenuated ROS-mediated autophagy regulation. Moreover, the expression of the long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) increased, and NAC and TUG1 siRNA inhibited the expression of TUG1/mammalian target of rapamycin (mTOR) in DRGs treated with BP in a high-glucose environment. Intriguingly, contrary to previous reports on a positive effect on neurons, we found that rapamycin, an autophagy activator, and chloroquine, an autophagy and lysosome inhibitor, both exacerbated autophagic damage. These data suggest that a high-glucose environment exacerbated BP induced ROS-dependent autophagic damage in DRG neurons through the TUG1/mTOR signaling pathway, which provides a theoretical basis and target for the clinical prevention and treatment of BP neurotoxicity in diabeties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

LA:

Local anesthetic

ROS:

Reactive oxygen species

lncRNA:

Long non-coding RNA

TUG1:

Taurine upregulated gene1

mTOR:

Mammalian target of rapamycin

DRG:

Dorsal root ganglion

BP:

Bupivacaine

NAC:

N-acetyl-cysteine

NGF:

Nerve growth factor

TNS:

Transient neurological syndrome

References

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    CAS  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bower WF, Lee PY, Kong AP, Jiang JY, Underwood MJ, Chan JC, Van Hasselt CA (2010) Peri-operative hyperglycemia: a consideration for general surgery? Am J Surg 199(2):240–248

    PubMed  CAS  Google Scholar 

  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491(7424):454–457

    PubMed  CAS  Google Scholar 

  • Chan SH, Kikkawa U, Matsuzaki H, Chen JH, Chang WC (2012) Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells. J Biomed Sci 19:64

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Wang M, Yang H, Mao L, He Q, Jin H, Ye ZM, Luo XY, Xia YP, Hu B (2017) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 485(1):167–173

    PubMed  Google Scholar 

  • Chen W, Mi R, Haughey N, Oz M, Hoke A (2007) Immortalization and characterization of a nociceptive dorsal root ganglion sensory neuronal line. J Peripher Nerv Syst 12(2):121–130

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chisato K, Koji A (2021) The role of non-coding RNAs in the neuroprotective effects of glutathione. Int Mol Sci 22(8):4245

    Google Scholar 

  • Clarke JP, Mearow K (2016) Autophagy inhibition in endogenous and nutrient-deprived conditions reduces dorsal root ganglia neuron survival and neurite growth in vitro. J Neurosci Res 94(7):653–670

    PubMed  CAS  Google Scholar 

  • Crack PJ, Taylor JM (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38(11):1433–1444

    PubMed  CAS  Google Scholar 

  • Doan LV, Eydlin O, Piskoun B, Kline RP, Recio-Pinto E, Rosenberg AD, Blanck TJ, Xu F (2014) Despite differences in cytosolic calcium regulation, lidocaine toxicity is similar in adult and neonatal rat dorsal root ganglia in vitro. Anesthesiology 120:50–61

    PubMed  CAS  Google Scholar 

  • Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M, Rinn JL, Lee MG, Chen Y, Kantoff PW, Liu XS (2016) Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun 7:10982

    PubMed  PubMed Central  CAS  Google Scholar 

  • Galbes O, Bourret A, Nouette-Gaulain K, Pillard F, Matecki S, Py G, Mercier J, Capdevila X, Philips A (2010) N-acetylcysteine protects against bupivacaine-induced myotoxicity caused by oxidative and sarcoplasmic reticulum stress in human skeletal myotubes. Anesthesiology 113(3):560–569

    PubMed  CAS  Google Scholar 

  • Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen YG (2010) Autophagy negatively regulates Wnt signalling by promoting dishevelled degradation. Nat Cell Biol 12(8):781–790

    PubMed  CAS  Google Scholar 

  • Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P (2013) ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 9(9):1292–1307

    PubMed  CAS  Google Scholar 

  • Gatica D, Lahiri V, Klionsky DJ (2018) Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20(3):233–242

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo JS, Jing PB, Wang JA, Zhang R, Jiang BC, Gao YJ, Zhang ZJ (2015) Increased autophagic activity in dorsal root ganglion attenuates neuropathic pain following peripheral nerve injury. Neurosci Lett 599:158–163

    PubMed  CAS  Google Scholar 

  • Hasan R, Suresh D, Hamza SM, Khalid S, Mohiuddin M (2011)A study on drug-drug interaction of diltiazem with nateglinide in diabetic animals. RJPS:123

  • Hong S, Morrow TJ, Paulson PE, Isom LL, Wiley JW (2004) Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and-resistant sodium channels in dorsal root ganglion neurons in the rat. J Biol Chem 279:29341–29350

    PubMed  CAS  Google Scholar 

  • Jensen TS, Baron R (2003) Translation of symptoms and signs into mechanisms in neuropathic pain. Pain 102:1–8

    PubMed  Google Scholar 

  • Jeon MJ, Leem J, Ko MS, Jang JE, Park HS, Kim HS, Kim M, Kim EH, Yoo HJ, Lee CH, Park IS, Lee KU, Koh EH (2012) Mitochondrial dysfunction and activation of iNOS are responsible for the palmitate-induced decrease in adiponectin synthesis in 3T3L1 adipocytes. Exp Mol Med 44(9):562–570

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ji ZH, Liu ZJ, Liu ZT, Zhao W, Williams BA, Zhang HF, Li L, Xu SY (2017) Diphenyleneiodonium mitigates bupivacaine-induced sciatic nerve damage in a diabeticneuropathy rat model by attenuating oxidative stress. Anesth Analg 125(2):144–165

    Google Scholar 

  • Kallenborn-Gerhardt W, Schröder K, Geisslinger G, Schmidtko A (2013) NOXious signaling in pain processing. Pharmacol Ther 137(3):309–317

    PubMed  CAS  Google Scholar 

  • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, Ko T, Han J, Kim HL, Kim J, Back SH, Komatsu M, Chen H, Chan DC, Konishi M, Itoh N, Choi CS, Lee MS (2013) Autophagy de ciency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19(1):83–92

    PubMed  CAS  Google Scholar 

  • Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, Lee CS, Flockhart RJ, Groff AF, Chow J, Johnston D, Kim GE, Spitale RC, Flynn RA, Zheng GX, Aiyer S, Raj A, Rinn JL, Chang HY, Khavari PA (2013) Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493(7431):231–235

    PubMed  CAS  Google Scholar 

  • Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, Allhoff W, Stricker SH, Klement RM, Warczok KE, Aumayr K, Pasierbek P, Barlow DP (2012) Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–1472

    PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Zhang M, An G, Ma Q (2016a) LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med 241(6):644–649

    CAS  Google Scholar 

  • Li R, Ma H, Zhang X, Li C, Xiong J, Lu T, Mao Y, Dai J, Liu L, Ding Z (2016b) Impaired Autophagosome clearance contributes to local anesthetic bupivacaine-induced myotoxicity in mouse myoblasts. Anesthesiology 122:595–605

    Google Scholar 

  • Lirk P, Birmingham B, Hogan Q (2011) Regional anesthesia in patients with preexisting neuropathy. Int Anesthesiol Clin 49(4):144–165

    PubMed  Google Scholar 

  • Liu ZJ, Zhao W, Yuan PF, Zhu P, Fan KK, Xia ZY, Xu SY (2020) The mechanism of CaMK2α-MCU-mitochondrial oxidative stress in bupivacaine-induced neurotoxicity. Free Radic Biol Med 152:363–374

    PubMed  CAS  Google Scholar 

  • Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125(25):3170–3181

    PubMed  PubMed Central  CAS  Google Scholar 

  • Morissette G, Bawolak MT, Marceau F (2011) Dissociation of the vacuolar and macroautophagic cytopathology from the cytotoxicity induced by the lipophilic local anesthetic bupivacaine. Can J Physiol Pharmacol 89(7):505–512

    PubMed  CAS  Google Scholar 

  • Mu LL, Lei C, Zhong XL, Zhou Y (2015) Long non-coding RNA Tug1 in cortical development of cerebrum. SCIENTIA SINICA Vitae 45(2):156–164

    Google Scholar 

  • Park ES, Gao X, Chung JM, Chung K (2006) Levels of mitochondrial reactive oxygen species in- crease in rat neuropathic spinal dorsal horn neurons. Neurosci Lett 391:108–111

    PubMed  CAS  Google Scholar 

  • Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA (2013) Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 12(5):616–628

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4):304–312

    PubMed  CAS  Google Scholar 

  • Sango K, Yanagisawa H, Komuta Y, Si Y, Kawano H (2018) Neuroprotective properties of ciliary neurotrophic factor for cultured adult rat dorsal root ganglion neurons. Histochem Cell Biol 130(4):669–679

    Google Scholar 

  • Sharma D, Singh JN, Sharma SS (2016) Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons. Neurosci Lett 635:83–89

    PubMed  CAS  Google Scholar 

  • Su Q, Liu Y, Lv X, Ye Z, Sun Y, Kong BH, Qin Z (2019) Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol 133:12–25

    PubMed  CAS  Google Scholar 

  • Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT (2013) Jpx RNA activates Xist by evicting CTCF. Cell 153(7):1537–1551

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang B, Man WT, Chang YK, Hao JH, Yang J (2016) Experimental research of the effect of TUG1 gene silencing on the biological function of brain glioma. Chinese Journal of Neurosugery 32(9):940–945

    Google Scholar 

  • Wang YW, Lai LY, Guo WJ, Peng SH, Liu RM, Hong P, Wei GS, Li FX, Jiang S, Wang P, Li J, Lei HY, Zhao W, Xu SY (2020) Inhibition of Ku70 in a high-glucose environment aggravates bupivacaine-induced dorsal root ganglion neurotoxicity. Toxicol Lette 318:104–113

    CAS  Google Scholar 

  • Xie R, Nguyen S, Mckeehan K, Wang F, Mckeehan WL, Liu L (2011) Microtubule-associated protein 1S (MAP1S) bridges autophagic components with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. J Biol Chem 286(12):10367–10377

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2011) Defective hepatic autophagy in obesity promotes er stress and causes insulin resistance. Cell Metab 11(6):467–478

    Google Scholar 

  • Young TL, Cepko CL (2004) A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41(6):867–879

    PubMed  CAS  Google Scholar 

  • Yu XJ, Zhao W, Li YJ, Li FX, Liu ZJ, Xu HL, Lai LY, Xu R, Xu SY (2017) Neurotoxicity comparison of two types of local anaesthetics: amide-bupivacaine versus ester-procaine. Sci Rep 7:45316

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou B, Li H, Liu J, Xu L, Guo Q, Zang W, Sun H, Wu S (2016) Autophagic dysfunction is improved by intermittent administration of osteocalcin in obese mice. Int J Obes (lond) 40(5):833–843

    CAS  Google Scholar 

  • Zhou J, Hu SE, Tan SH, Cao R, Chen Y, Xia D, Zhu X, Yang XF, Ong CN, Shen HM (2012) Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy 8(3):338–349

    PubMed  CAS  Google Scholar 

  • Zhu Y, Han S, Li X, Gao Y, Zhu J, Yang X, Xu L (2021) Paeoniflorin effect of Schwann cell-derived exosomes ameliorates dorsal root ganglion neurons apoptosis through IRE1α pathway. Evid Based Complement Alternat Med 2021:6079305

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory of Pharmacy College of Southern Medical University (Guangzhou, Guangdong province, China) for their support. We also thank Hongfen Shen (M.S.. Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong province, China) for the technical assistance.

Funding

This research was supported by the grants from the National Natural Science Foundation of China (No. 81501082 to Fengxian Li, No. 81771315 to Shiyuan Xu, and No. 82171357 to Le Li).

Author information

Authors and Affiliations

Authors

Contributions

Luying Lai performed primary neurons culture, immunofluorescence staining, DAP-green detection, and ROS fluorescence detection; Yongwei Wang performed primary neurons culture, cell viability assay, and western blot; Shenghui Peng participated in DAP-green detection and ROS flourescence detection; Wenjing Guo participated in primary neurons culture and western blot; Guanshan Wei and Le Li participated in western blot; Zhengyuan Xia contributed to experimental design and manuscript preparation; Luying Lai and Fengxian Li participated in data analysis, manuscript preparation, and wrote the paper; Fengxian Li and Shiyuan Xu planned and directed all experiments. All authors contributed to and have approved the final manuscript.

Corresponding authors

Correspondence to Fengxian Li or Shiyuan Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1007 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Wang, Y., Peng, S. et al. Bupivacaine Induces ROS-Dependent Autophagic Damage in DRG Neurons via TUG1/mTOR in a High-Glucose Environment. Neurotox Res 40, 111–126 (2022). https://doi.org/10.1007/s12640-021-00461-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00461-8

Keywords

  • High glucose
  • Bupivacaine
  • ROS
  • TUG1
  • mTOR
  • Autophagy