Skip to main content
Log in

Liraglutide Regulates Mitochondrial Quality Control System Through PGC-1α in a Mouse Model of Parkinson’s Disease

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a multifactorial disorder, and there is strong evidence that mitochondria play an essential role in the disorder. Factors that regulate the mechanism of the mitochondrial quality control system have been drawing more and more attention. PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) is a powerful transcription factor involved in regulation of mitochondrial function. Glucagon-like peptide 1 (GLP-1), a brain-gut peptide, can enter the central nervous system through the blood–brain barrier and play neuroprotective role. However, whether the GLP-1R agonist liraglutide regulates mitochondrial quality control system through PGC-1α is still unclear. We administered different doses of liraglutide to intervene MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD model, and then immunofluorescence, Western blot, and stereotactic injection of lentivirus to downregulate PGC-1α were used to explore the mechanisms underlying the protective effect of liraglutide in PD. The results showed that MPTP lead to decreased mitochondrial biogenesis, disrupted mitochondrial dynamics, inhibited mitochondrial autophagy, and promoted cell apoptosis. While liraglutide effectively attenuated the neurotoxicity of MPTP, including reversing the dyskinesia caused by MPTP and preserving the expression of GLP-1R, TH, and PGC-1α in the substantia nigra (SN), further experiments showed that downregulation of PGC-1α expression via stereotactic injection PGC-1α lentivirus into the SN reversed the liraglutide protective effects. By PGC-1α downregulation, we found that PGC-1α can not only regulate mitochondria biogenesis, mitochondria dynamics, and autophagy, but also regulate cell apoptosis. In summary, liraglutide has a neuroprotective effect in the PD model induced by MPTP. This protective effect is accomplished by activating PGC-1α, which regulates the mitochondrial quality control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data and material from this study are available upon reasonable request through the corresponding author.

References

  • Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018) Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol 55:2547–2564

    Article  CAS  Google Scholar 

  • Aroda VR (2018) A review of GLP-1 receptor agonists: evolution and advancement, through the lens of randomised controlled trials. Diabetes Obes Metab 20(Suppl 1):22–33

    Article  CAS  Google Scholar 

  • Athauda D, Maclagan K, Skene SS, Bajwa-Joseph M, Letchford D, Chowdhury K, Hibbert S, Budnik N, Zampedri L, Dickson J et al (2017) Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 390:1664–1675

    Article  CAS  Google Scholar 

  • Badawi GA, Abd El Fattah MA, Zaki HF, El Sayed MI (2019) Sitagliptin and liraglutide modulate L-dopa effect and attenuate dyskinetic movements in rotenone-lesioned rats. Neurotox Res 35:635–653

    Article  CAS  Google Scholar 

  • Balestrino R, Schapira A (2020) Parkinson disease. Eur J Neurol 27:27–42

    Article  CAS  Google Scholar 

  • Brauer R, Wei L, Ma T, Athauda D, Girges C, Vijiaratnam N, Auld G, Whittlesea C, Wong I, Foltynie T (2020) Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain 143:3067–3076

    Article  Google Scholar 

  • Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Dériaz O, Zorzano A et al (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol 567:349–358

    Article  CAS  Google Scholar 

  • Chen Y, Dorn GW II (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–475

    Article  CAS  Google Scholar 

  • De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT (2018) Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology 91:e139–e142

    Article  Google Scholar 

  • Dickson DW (2018) Neuropathology of Parkinson disease. Parkinsonism Relat Disord 46(Suppl 1):S30–S33

    Article  Google Scholar 

  • Fang X, Tian P, Zhao X, Jiang C, Chen T (2019) Neuroprotective effects of an engineered commensal bacterium in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Parkinson disease mouse model via producing glucagon-like peptide-1. J Neurochem 150:441–452

    Article  CAS  Google Scholar 

  • Farkas E, Szilvásy-Szabó A, Ruska Y, Sinkó R, Rasch MG, Egebjerg T, Pyke C, Gereben B, Knudsen LB, Fekete C (2021) Distribution and ultrastructural localization of the glucagon-like peptide-1 receptor (GLP-1R) in the rat brain. Brain Struct Funct 226:225–245

    Article  CAS  Google Scholar 

  • Gao W, Du X, Lei L, Wang H, Zhang M, Wang Z, Li X, Liu G, Li X (2018) NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J Cell Mol Med 22:3408–3422

    Article  CAS  Google Scholar 

  • González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L et al (2021) Disruption of mitochondrial complex I induces progressive parkinsonism. Nature

  • Guan X, Wu P, Cao B, Liu X, Chen X, Zhang W, Zhang Y, Guan Z, Wang Y (2021) PGC-1α-siRNA suppresses inflammation in substantia nigra of PD mice by inhibiting microglia. Int J Neurosci :1–12

  • Göke R, Larsen PJ, Mikkelsen JD, Sheikh SP (1995) Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7:2294–2300

    Article  Google Scholar 

  • Halling JF, Pilegaard H (2020) PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab 45:927–936

    Article  CAS  Google Scholar 

  • Hunter K, Hölscher C (2012) Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci 13:33

    Article  CAS  Google Scholar 

  • Hussain S, Singh A, Baxi H, Taylor B, Burgess J, Antony B (2020) Thiazolidinedione use is associated with reduced risk of Parkinson’s disease in patients with diabetes: a meta-analysis of real-world evidence. Neurol Sci 41:3697–3703

    Article  Google Scholar 

  • Jeong SY, Seol DW (2008) The role of mitochondria in apoptosis. BMB Rep 41:11–22

    Article  CAS  Google Scholar 

  • Jiang X, Jin T, Zhang H, Miao J, Zhao X, Su Y, Zhang Y (2019) Current progress of mitochondrial quality control pathways underlying the pathogenesis of Parkinson’s disease. Oxid Med Cell Longev 2019:4578462

    PubMed  PubMed Central  Google Scholar 

  • Kim DS, Choi HI, Wang Y, Luo Y, Hoffer BJ, Greig NH (2017) A new treatment strategy for Parkinson’s disease through the gut-brain axis: the glucagon-like peptide-1 receptor pathway. Cell Transplant 26:1560–1571

    Article  Google Scholar 

  • Li T, Tu L, Gu R, Yang XL, Liu XJ, Zhang GP, Wang Q, Ren YP, Wang BJ, Tian JY (2020) Neuroprotection of GLP-1/GIP receptor agonist via inhibition of mitochondrial stress by AKT/JNK pathway in a Parkinson’s disease model. Life Sci 256:117824

    Article  CAS  Google Scholar 

  • Ma CL, Su L, Xie JJ, Long JX, Wu P, Gu L (2014) The prevalence and incidence of Parkinson’s disease in China: a systematic review and meta-analysis. J Neural Transm (vienna) 121:123–134

    Article  Google Scholar 

  • Ma D, Liu X, Liu J, Li M, Chen L, Gao M, Xu W, Yang Y (2019) Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice. Brain Res 1714:126–132

    Article  CAS  Google Scholar 

  • Peng K, Xiao J, Yang L, Ye F, Cao J, Sai Y (2019) Mutual antagonism of PINK1/Parkin and PGC-1α contributes to maintenance of mitochondrial homeostasis in rotenone-induced neurotoxicity. Neurotox Res 35:331–343

    Article  CAS  Google Scholar 

  • Peng K, Yang L, Wang J, Ye F, Dan G, Zhao Y, Cai Y, Cui Z, Ao L, Liu J et al (2017) The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol 54:3783–3797

    Article  CAS  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  CAS  Google Scholar 

  • Raza C, Anjum R, Shakeel N (2019) Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci 226:77–90

    Article  CAS  Google Scholar 

  • Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C, Archer SL (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26:2175–2186

    Article  CAS  Google Scholar 

  • Salcedo I, Tweedie D, Li Y, Greig NH (2012) Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 166:1586–1599

    Article  CAS  Google Scholar 

  • Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702

    Article  CAS  Google Scholar 

  • Shu Z, Zhang X, Zheng L, Zeng G, Mo Y, Yu M, Zhang X, Tan X (2019) Epigallocatechin-3-gallate regulates mitofusin 2 expression through the peroxisome proliferator-activated receptor-γ coactivator-1α and estrogen-related receptor-α pathway. J Cell Biochem 120:7211–7221

    Article  CAS  Google Scholar 

  • Soriano FX, Liesa M, Bach D, Chan DC, Palacín M, Zorzano A (2006) Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes 55:1783–1791

    Article  CAS  Google Scholar 

  • Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18:101–113

    Article  CAS  Google Scholar 

  • Valerio A, Bertolotti P, Delbarba A, Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG, Nisoli E (2011) Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem 116:1148–1159

    Article  CAS  Google Scholar 

  • Wang C, Li L, Liu S, Liao G, Li L, Chen Y, Cheng J, Lu Y, Liu J (2018) GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis. PLoS One 13:e0193473

    Article  CAS  Google Scholar 

  • Wang Y, Zhao W, Li G, Chen J, Guan X, Chen X, Guan Z (2017) Neuroprotective effect and mechanism of thiazolidinedione on dopaminergic neurons in vivo and in vitro in Parkinson’s disease. PPAR Res 2017:4089214

    PubMed  PubMed Central  Google Scholar 

  • Yoo SM, Jung YK (2018) A molecular approach to mitophagy and mitochondrial dynamics. Mol Cells 41:18–26

    PubMed  PubMed Central  CAS  Google Scholar 

  • Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  Google Scholar 

  • Zhang L, Zhang L, Li L, Hölscher C (2019) Semaglutide is Neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis 9:157–171

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from Science Foundation of Hebei Normal University under Grant Number L2020Z05, and Hebei Province Foundation for Returnees under Grant Number C20200341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqin Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 2190 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Dong, Y., Chen, J. et al. Liraglutide Regulates Mitochondrial Quality Control System Through PGC-1α in a Mouse Model of Parkinson’s Disease. Neurotox Res 40, 286–297 (2022). https://doi.org/10.1007/s12640-021-00460-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00460-9

Keywords

Navigation