Skip to main content

Advertisement

Log in

Opicapone Protects Against Hyperhomocysteinemia-Induced Increase in Blood–Brain Barrier Permeability

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (HHcy)-related brain vascular disorders and brain endothelial dysfunction are important characteristics of the pathogeneses of subarachnoid hemorrhage and stroke. Upregulated homocysteine (Hcy) can impair the integrity of the blood–brain barrier (BBB). Opicapone has been recently licensed for the management of Parkinson’s disease (PD); however, it is unknown whether it possesses a protective effect in brain vessels against HHcy. To investigate the beneficial effects of Opicapone on BBB permeability against HHcy, we carried out both in vivo and in vitro experiments. Mice were allocated into four groups: the Control, Opicapone, HHcy, and HHcy + Opicapone. Interestingly, we found that the administration of Opicapone attenuated the increased BBB permeability in Hcy-treated mice, as determined by sodium fluorescein staining. The immunofluorescence staining showed that Opicapone prevented homocysteine-induced reduction of claudin-2 in the mice cortices. The in situ zymography assay revealed that Opicapone suppressed homocysteine-increased matrix metalloproteinases (MMPs) activity in the cortices. In bEnd.3 brain endothelial cells, Opicapone treatment ameliorated homocysteine-induced lactate dehydrogenase (LDH) release and expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Furthermore, Opicapone alleviated homocysteine-induced decrease in claudin-2 level in bEnd.3 cells. In summary, our results show that Opicapone protects against HHcy-induced BBB permeability by reducing the expression and gelatinase activity of MMPs, and increasing the expression of claudin-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM, Cereijido M (2001) Introduction: evolution of ideas on the tight junction. In: Cereijido M, Anderson JM (eds) Tight junctions. CRC Press, Boca Raton, FL, pp 1–18

    Google Scholar 

  • Beard RS, Bearden SE, Bearden SE (2011) Vascular complications of cystathionine β-synthase deficiency: future directions for homocysteine-to-hydrogen sulfide research. Am J Physiol Heart Circ Physiol 300:H13-26

    CAS  PubMed  Google Scholar 

  • Bhargava S, Bhargava MS, Bhargava EK, Srivastava LM (2016) Hyperhomocysteinemia, MMPs and Cochlear Function: Indian J. Clin Biochem 31(2):148–151

    CAS  Google Scholar 

  • Bostom AG, Carpenter MA, Kusek JW, Levey AS, Hunsicker L, Pfeffer MA, Selhub J, Jacques PF, Cole E, Gravens-Mueller L, House AA, Kew C, McKenney JL, Pacheco-Silva A, Pesavento T, Pirsch J, Smith S, Solomon S, Weir M (2011) Homocysteine-lowering and cardiovascular disease outcomes in kidney transplant recipients: primary results from the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Circulation 123(16):1763–1770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonetti F, Brombo G, Zuliani G (2016) The relationship between hyperhomocysteinemia and neurodegeneration. Neurodegener Dis Manag 6:133–145

    PubMed  Google Scholar 

  • Bonifácio MJ, Torrão L, Loureiro AI, Palma PN, Wright LC, Soares-da-Silva P (2015) Pharmacological profile of opicapone, a third generation nitrocatechol catechol-O-methyl transferase inhibitor, in the rat. Br J Pharmacol 172(7):1739–1752

    PubMed  PubMed Central  Google Scholar 

  • Campbell W, Deshmukh A, Blum S, Todd L, Mendonca N, Weist J, Zent J, Hoang T, Blackshaw S, Leight J, Fischer A (2019) Matrix-metalloproteinase expression and gelatinase activity in the avian retina and their influence on Müller glia proliferation. Exp Neurol 320:112984

  • Cho K, Amin ZM, An J, Rambaran KA, Johnson TB, Alzghari SK (2017) Methylenetetrahydrofolate reductase A1298C polymorphism and major depressive disorder. Cureus 9:e1734

  • Dayal S, Lentz SR (2008) Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler Thromb Vasc Biol 28:1596–1605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich D, Humpel C (2012) Chronic vascular risk factors (cholesterol, homocysteine, ethanol) impair spatial memory, decline cholinergic neurons and induce blood-brain barrier leakage in rats in vivo. J Neurol Sci 322:92–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Zhang L, Li H, Chen G, Qi G, Ma X, Jin Y (2020) Role of homocysteine in the development and progression of Parkinson’s disease. Ann Clin Transl Neurol 7(11):2332–2338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flentje A, Kalsi R, Monahan TS (2019) Small GTPases and their role in vascular disease. Int J Mol Sci 20:917

    CAS  PubMed Central  Google Scholar 

  • Ford AH, Flicker L, Singh U, Hirani V, Almeida OP (2013) Homocysteine, depression and cognitive function in older adults. J Affect Disord 151:646–651

    CAS  PubMed  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998a) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7):1539–1550

  • Furuse M, Sasaki H, Fujimoto K, Tsukita SJ (1998b) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. Cell Biol 143(2):391–401

    CAS  Google Scholar 

  • Fujii M, Duris K, Altay O, Soejima Y, Sherchan P, Zhang JH (2012) Inhibition of Rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats. Neurochem Int 60:327–333

    CAS  PubMed  Google Scholar 

  • Halazun KJ, Bofkin KA, Asthana S, Evans C, Henderson M, Spark JI (2007) Hyperhomocysteinaemia is associated with the rate of abdominal aortic aneurysm expansion. Eur J Vasc Endovasc Surg 33(4):391–394

    CAS  PubMed  Google Scholar 

  • Hartmann S, Ridley AJ, Lutz S (2015) The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol 6:276

    PubMed  PubMed Central  Google Scholar 

  • He Y, Li Y, Chen Y, Feng L, Nie Z (2014) Homocysteine level and risk of different stroke types: a meta-analysis of prospective observational studies. Nutr Metab Cardiovasc Dis

  • Hensel N, Rademacher S, Claus P (2015) Chatting with the neighbors: crosstalk between Rho-kinase (ROCK) and other signaling pathways for treatment of neurological disorders. Front Neurosci 9:198

    PubMed  PubMed Central  Google Scholar 

  • Hu XW, Qin SM, Li D, Hu LF, Liu CF (2013) Elevated homocysteine levels in levodopa-treated idiopathic Parkinson’s disease: a meta-analysis. Acta Neurol Scand 128(2):73–82

    CAS  PubMed  Google Scholar 

  • Horstmann S, Kalb P, Kozoil J, Gardner H, Wagner S (2003) Profiles of MMPs, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 34(9):2165–2170

    PubMed  Google Scholar 

  • Jauch E, Al Kasab S, Stettler B (2021) What is the role of homocysteine in the pathogenesis of ischemic stroke? Medscape Logo

  • Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N et al (2014) Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metab 34:1212–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya M, Ahishali B (2011) Assessment of permeability in barrier type of endothelium in brain using tracers: Evans Blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol 763:369–382

    CAS  PubMed  Google Scholar 

  • Koch JC, Tatenhorst L, Roser AE, Saal KA, Tönges L, Lingor P (2018) ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 189:1–21

    CAS  PubMed  Google Scholar 

  • Kumar M, Sandhir R (2020) Hydrogen sulfide attenuates hyperhomocysteinemia-induced blood-brain barrier permeability by inhibiting MMP-9. Int J Neurosci. https://doi.org/10.1080/00207454.2020.1860967

    Article  PubMed  Google Scholar 

  • Kunisawa K, Nakashima N, Nagao M, Nomura T, Kinoshita S, Hiramatsu M (2015) Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex. Behav Brain Res 292:36–43

    CAS  PubMed  Google Scholar 

  • Laine GA (1988) Microvascular changes in heart during chronic arterial hypertension. Circ Res 62(5):953–960

    CAS  PubMed  Google Scholar 

  • Lee M, Hong KS, Chang SC, Saver JL (2010) Efficacy of homocysteine-lowering therapy with folic Acid in stroke prevention: a meta-analysis. Stroke 41(6):1205–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-G, Praticò D (2014) High levels of homocysteine results in cerebral amyloid angiopathy in Mice. J Alzheimer’s Dis 43:29–35

    Google Scholar 

  • Liu J, Gao H, Wang X (2015) The role of the Rho/ROCK signaling pathway in inhibiting axonal regeneration in the central nervous system. Neural Regen Res 10(11):1892–1896

    PubMed  PubMed Central  Google Scholar 

  • Liu K, Li Z, Wu T, Ding S (2011a) Role of rho kinase in microvascular damage following cerebral ischemia reperfusion in rats. Int J Mol Sci 12:1222–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang D, Wong KS, Wang Y (2011b) Stroke and stroke care in China: huge burden, significant workload, and a national priority. Stroke 42:3651–3654. https://doi.org/10.1161/STROKEAHA.111.635755

    Article  PubMed  Google Scholar 

  • McCully KS (2018) Review: chemical pathology of homocysteine VI. Aging, cellular senescence, and mitochondrial dysfunction. Ann Clin Lab Sci 48:677–687

    CAS  PubMed  Google Scholar 

  • Nath N, Prasad HK, Kumar M (2019) Cerebroprotective effects of hydrogen sulfide in homocysteine-induced neurovascular permeability: involvement of oxidative stress, arginase, and matrix metalloproteinase-9. J Cell Physiol 234:3007–3019

    CAS  PubMed  Google Scholar 

  • Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    CAS  PubMed  Google Scholar 

  • O’Suilleabhain PE, Sung V, Hernandez C, Lacritz L, Dewey RB Jr, Bottiglieri T, Diaz-Arrastia R (2004) Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch Neurol 61(6):865–868

    PubMed  Google Scholar 

  • Park WC, Chang JH (2014) Clinical implications of methylenetetrahydrofolate reductase mutations and plasma homocysteine levels in patients with thromboembolic occlusion. Vasc Specialist Int 30(4):113–119

    PubMed  PubMed Central  Google Scholar 

  • Popkirov S, Ayzenberg I, Hahn S, Bauer J, Denno Y, Rieckhoff N, Radzimski C, Hans V, Berg S, Roghmann F, Noldus J, Bien C, Skodda S, Wellmer J, Stöcker W, Krogias C, Gold R, Schlegel U, Probst C, Komorowski L, Miske R, Kleiter I (2017) Rho-associated protein kinase 2 (ROCK2): a new target of autoimmunity in paraneoplastic encephalitis. Acta Neuropathol Commun 5(1):40

  • Qiu LH, Zhang BQ, Lian MJ, Xie XJ, Chen P (2017) Vascular protective effects of Astragalus membranaceus and its main constituents in rats with chronic hyperhomocysteinemia. Exp Ther Med 14:2401–2407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rempe RG, Hartz AMS, Bauer B (2016) Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 36:1481–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodehouse BC, Mayo JN, Beard RS, Chen C-H, Bearden SE (2013) Opening of the bloodbrain barrier before cerebral pathology in mild hyperhomocysteinemia. PLoS One 8:e63951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues FB, Ferreira JJ (2017) Opicapone for the treatment of Parkinson’s disease. Expert Opin Pharmacother 18(4):445–453

    CAS  PubMed  Google Scholar 

  • Rosenberg GA (2012) Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab 32:1139–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott LJ (2021) Opicapone: A Review in Parkinson’s Disease. CNS Drugs 35(1):121–131

    CAS  PubMed  Google Scholar 

  • Sharma M, Tiwari M, Tiwari RK (2015) Hyperhomocysteinemia: impact on neurodegenerative diseases. Basic Clin Pharmacol Toxicol 117:287–296

    CAS  PubMed  Google Scholar 

  • Smith AD, Homocysteine RH (2016) B vitamins, and cognitive impairment. Annu Rev Nutr 36:211–239

    CAS  PubMed  Google Scholar 

  • Smith AD, Smith SM, de Jager CA, Whitbread P, Johnston C, Agacinski G, Oulhaj A, Bradley KM, Jacoby R, Refsum H (2010) Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. PLoS One. 5(9):e12244

  • Song Y, Chen X, Wang LY, Gao W, Zhu MJ (2013) Rho kinase inhibitor fasudil protects against β-amyloid-induced hippocampal neurodegeneration in rats. CNS Neurosci Ther 19:603–610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sporer B, Koedel U, Paul R, Kohleisen B, Erfle V, Fontana A et al (2000) Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol 102:125–130

    CAS  PubMed  Google Scholar 

  • Steinemann A, Galm I, Chip S, Nitsch C, Maly IP (2016) Claudin-1, -2 and -3 are selectively expressed in the epithelia of the choroid plexus of the mouse from early development and into adulthood while claudin-5 is restricted to endothelial cells. Front Neuroanat 10:16

    PubMed  PubMed Central  Google Scholar 

  • Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatenhorst L, Eckermann K, Dambeck V et al (2016) Fasudil attenuates aggregation of α-synuclein in models of Parkinson’s disease. Acta Neuropathol Commun 4:39

    PubMed  PubMed Central  Google Scholar 

  • Tönges L, Frank T, Tatenhorst L et al (2012) Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain 135:3355–3370

    PubMed  PubMed Central  Google Scholar 

  • Trabetti E (2008) Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet 49:267–282

    PubMed  Google Scholar 

  • Venugopal S, Anwer S, Szászi K (2019) Claudin-2: roles beyond permeability functions. Int J Mol Sci 20(22):5655

    CAS  PubMed Central  Google Scholar 

  • Wyss-Coray T (2016) Ageing, neurodegeneration, and brain rejuvenation. Nature 539(7628):180–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Ding N, Zhang H, Liu K, Xiong J, Ma S, Yang A, Zhang H, Jiang Y (2021) SNF5 promotes IL-1beta expression via H3K4me1 in atherosclerosis induced by homocysteine. Int J Biochem Cell Biol 135:105974

  • Zhao M, Wang X, He M, Qin X, Tang G, Huo Y, Li J, Fu J, Huang X, Cheng X, Wang B, Hou FF, Sun N, Cai Y (2017) Homocysteine and stroke risk. Stroke 48:1183–1190

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Ministry of Sichuan Province (2019ZYZF0063, 2020yj0497, and 2019yyjskf06).

Author information

Authors and Affiliations

Authors

Contributions

Jianhong Wang and Jian Wang made a substantial contribution to experimental designs; Jian Wang, Bo Zheng, Shu Yang, and Hui Zheng performed experiments; Jian Wang collected data; Jianhong Wang drafted the manuscript.

Corresponding authors

Correspondence to Hui Zheng or Jianhong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zheng, B., Yang, S. et al. Opicapone Protects Against Hyperhomocysteinemia-Induced Increase in Blood–Brain Barrier Permeability. Neurotox Res 39, 2018–2028 (2021). https://doi.org/10.1007/s12640-021-00429-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00429-8

Keywords

Navigation