Skip to main content
Log in

Ramelteon Mitigates Free Fatty Acid (FFA)–Induced Attachment of Monocytes to Brain Vascular Endothelial Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Acute ischemic stroke is a challenging disease that threatens the life of older people. Dysfunction of brain endothelial cells is reported to be involved in the pathogenesis of acute ischemic stroke. Ramelteon is a novel agonist of melatonin receptor developed for the treatment of insomnia. Recently, the promising protective effect of Ramelteon on brain injury has been widely reported. The present study aims to investigate the protective effect of Ramelteon against free fatty acid (FFA)–induced damages in brain vascular endothelial cells and the underlying mechanism. Firstly, we discovered that Ramelteon administration remarkably reversed the decreased cell viability, increased LDH release, activated oxidative stress, and excessive released inflammatory factors caused by FFAs. Secondly, Ramelteon extensively suppressed the attachment of U937 monocytes to bEnd.3 brain endothelial cells induced by FFAs. In addition, the elevated expression of E-selectin and the reduced expression of KLF2 induced by FFAs were pronouncedly alleviated by Ramelteon. Lastly, silencing of KLF2 abolished the protective effects of Ramelteon against FFA-induced expression of E-selectin and the attachment of U937 monocytes to bEnd.3 brain endothelial cells. In conclusion, Ramelteon mitigated FFA-induced attachment of monocytes to brain vascular endothelial cells by increasing the expression of KLF2 and reducing the expression of E-selectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available upon reasonable request to the corresponding author.

References

  • Atkins GB, Jain MK (2007) Role of Kruppel-like transcription factors in endothelial biology. Circ Res 100:1686–1695

    Article  CAS  Google Scholar 

  • Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA, Walsh ER et al (2006) Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442:299–302

    Article  CAS  Google Scholar 

  • Cipolla MJ, Liebeskind DS, Chan SL (2018) The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J Cereb Blood Flow Metab 38:2129–2149

    Article  Google Scholar 

  • Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, Jain MK (2006) Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A 103(17):6653–6658

    Article  CAS  Google Scholar 

  • Fan B, Gu JQ, Yan R, Zhang H, Feng J, Ikuyama S (2013) High glucose, insulin and free fatty acid concentrations synergistically enhance perilipin 3 expression and lipid accumulation in macrophages. Metabolism 62:1168–1179

    Article  CAS  Google Scholar 

  • Gao H, Liang M, Bergdahl A, Hamren A, Lindholm MW, Dahlman-Wright K et al (2006) Estrogen attenuates vascular expression of inflammation associated genes and adhesion of monocytes to endothelial cells. Inflamm Res 55:349–353

    Article  CAS  Google Scholar 

  • Gholizadeh S, Visweswaran GRR, Storm G, Hennink WE, Kamps J, Kok RJ (2018) E-selectin targeted immunoliposomes for rapamycin delivery to activated endothelial cells. Int J Pharm 548:759–770

    Article  CAS  Google Scholar 

  • Haram K, Mortensen JH, Myking O, Magann EF, Morrison JC (2019) The role of oxidative stress, adhesion molecules and antioxidants in preeclampsia. Curr Hypertens Rev 15:105–112

    Article  CAS  Google Scholar 

  • Herpich F, Rincon F (2020) Management of acute ischemic stroke. Crit Care Med 48(11):1654–1663

    Article  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol Biol 639:292–298

    PubMed  Google Scholar 

  • Jang E, Shin MH, Kim KS, Kim Y, Na YC, Woo HJ, Kim Y, Lee JH, Jang HJ (2014) Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC Complement Altern Med 14:253

    Article  Google Scholar 

  • Kanikarla-Marie P, Jain SK (2014) L-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS. Mol Cell Biochem 391:251–256

    Article  CAS  Google Scholar 

  • Kim GH, Komotar RJ, McCullough-Hicks ME, Otten ML, Starke RM, Kellner CP et al (2009) The role of polyamine metabolism in neuronal injury following cerebral ischemia. Can J Neurol Sci 36:14–19

    Article  Google Scholar 

  • Kuriyama A, Honda M, Hayashino Y (2014) Ramelteon for the treatment of insomnia in adults: a systematic review and meta-analysis. Sleep Med 15:385–392

    Article  Google Scholar 

  • Laviola L, Orlando MR, Incalza MA, Caccioppoli C, Melchiorre M, Leonardini A et al (2013) TNFalpha signals via p66(Shc) to induce E-Selectin, promote leukocyte transmigration and enhance permeability in human endothelial cells. PLoS One 8:e81930

    Article  Google Scholar 

  • Li H, Li H, Bao Y, Zhang X, Yu Y (2011) Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-kappaB pathway in rat aorta. Int J Cardiol 152:218–224

    Article  Google Scholar 

  • Lyublinskaya OG, Ivanova JS, Pugovkina NA, Kozhukharova IV, Kovaleva ZV, Shatrova AN, Aksenov ND, Zenin VV, Kaulin YA, Gamaley IA, Nikolskya NN (2017) Redox environment in stem and differentiated cells: a quantitative approach. Redox Biol 12(758–769):24

    Google Scholar 

  • McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90:1337–1381

    Article  CAS  Google Scholar 

  • Mohd Ariff A, Abu Bakar NA, Abd Muid S, Omar E, Ismail NH, Munro JM, Lo SK, Corless C, Robertson MJ, Lee NC, Barnhill RL et al (1992) Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Am J Pathol 141(1397–408):34

    Google Scholar 

  • Mokini Z, Marcovecchio ML, Chiarelli F (2010) Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways. Diabetes Res Clin Pract 87:313–321

    Article  CAS  Google Scholar 

  • Mondal N, Stolfa G, Antonopoulos A, Zhu Y, Wang SS, Buffone A Jr et al (2016) Glycosphingolipids on human myeloid cells stabilize E-selectin-dependent rolling in the multistep leukocyte adhesion cascade. Arterioscler Thromb Vasc Biol 36:718–727

    Article  CAS  Google Scholar 

  • Nayak L, Goduni L, Takami Y, Sharma N, Kapil P, Jain MK, Mahabeleshwar GH (2019) Kruppel-like factor 2 is a transcriptional regulator of chronic and acute inflammation. Chem Biol Interact 305:105–111

    Article  Google Scholar 

  • Nishiyama K, Hirai K (2014) The melatonin agonist ramelteon induces duration-dependent clock gene expression through cAMP signaling in pancreatic INS-1 β-cells. PLoS One 9(7):e102073

    Article  Google Scholar 

  • Pallag A, Filip GA, Olteanu D, Clichici S, Baldea I, Jurca T et al (2018) Equisetum arvense L. extract induces antibacterial activity and modulates oxidative stress, inflammation, and apoptosis in endothelial vascular cells exposed to hyperosmotic stress. Oxid Med Cell Longev 2018:3060525

    Article  Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315

    Article  CAS  Google Scholar 

  • Shen L, Gan Q, Yang Y, Reis C, Zhang Z, Xu S, Zhang T, Sun C (2021) Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front Aging Neurosci. 13:687246

    Article  CAS  Google Scholar 

  • Shi H, Sheng B, Zhang F, Wu C, Zhang R, Zhu J, Xu K, Kuang Y, Jameson SC, Lin Z, Wang Y, Chen J, Jain MK, Atkins GB (2013) Kruppel-like factor 2 protects against ischemic stroke by regulating endothelial blood brain barrier function. Am J Physiol Heart Circ Physiol 304(6):H796-805

    Article  CAS  Google Scholar 

  • Smith CW (1993) Leukocyte-endothelial cell interactions. Semin Hematol 30(4):45–53

    CAS  PubMed  Google Scholar 

  • Sobczak AI, Blindauer CA, Stewart AJ (2020) Toxicity of fatty acid profiles of popular edible oils in human EndoC-βH1 beta-cells. Nutr Diabetes 10:5

    Article  Google Scholar 

  • Sun Z, Han Y, Song S, Chen T, Han Y, Liu Y (2019) Activation of GPR81 by lactate inhibits oscillatory shear stress-induced endothelial inflammation by activating the expression of KLF2. IUBMB Life 71:2010–2019

    Article  CAS  Google Scholar 

  • Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42:1075–1081

    Article  CAS  Google Scholar 

  • Uchiyama M, Hamamura M, Kuwano T, Nishiyama H, Nagata H, Uchimura N (2011) Evaluation of subjective efficacy and safety of ramelteon in Japanese subjects with chronic insomnia. Sleep Med 12:119–126

    Article  Google Scholar 

  • Wang Q, Zhao L, Xu C, Zhou J, Wu Y (2019) Fusobacterium nucleatum stimulates monocyte adhesion to and transmigration through endothelial cells. Arch Oral Biol 100:86–92

    Article  CAS  Google Scholar 

  • Wang T, Li Z, Xia S, Xu Z, Chen X, Sun H (2020) The protective effects of ramelteon against isoflurane-induced insults and inflammatory response in brain microvascular endothelial cells. Neurotox Res 39(3):677–686

    Article  CAS  Google Scholar 

  • Watanabe A, Hirose M, Kitajima T, Tomita S, Iwata N (2018) A retrospective study of the efficacy of ramelteon for insomnia: relevance of dose and timing of administration. Sleep Biol Rhythms 16:69–75

    Article  Google Scholar 

  • Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152

    Article  CAS  Google Scholar 

  • Wu XL, Lu SS, Liu MR, Tang WD, Chen JZ, Zheng YR et al (2020) Melatonin receptor agonist ramelteon attenuates mouse acute and chronic ischemic brain injury. Acta Pharmacol Sin 41:1016–1024

    Article  CAS  Google Scholar 

  • Zhou HG, Liu L, Zhang Y, Huang YY, Tao YH, Zhang S et al (2013) Glutathione prevents free fatty acids-induced oxidative stress and apoptosis in human brain vascular endothelial cells through Akt pathway. CNS Neurosci Ther 19:252–261

    Article  Google Scholar 

Download references

Funding

This study is funded by “Soochow University.”

Author information

Authors and Affiliations

Authors

Contributions

Chunfeng Liu, Guijie Wang, and Fang Tian contributed to the study’s conception, design, and methodology; Guijie Wang, Fang Tian, Yu Li, and Yang Liu contributed to the investigation; Chunfeng Liu contributed significantly to analysis and manuscript preparation. All the authors have approved the final version of the submission.

Corresponding author

Correspondence to Chunfeng Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Tian, F., Li, Y. et al. Ramelteon Mitigates Free Fatty Acid (FFA)–Induced Attachment of Monocytes to Brain Vascular Endothelial Cells. Neurotox Res 39, 1937–1945 (2021). https://doi.org/10.1007/s12640-021-00422-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00422-1

Keywords

Navigation