Skip to main content

Advertisement

Log in

Cortical Synaptic Reorganization Under Chronic Arsenic Exposure

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

There is solid epidemiological evidence that arsenic exposure leads to cognitive impairment, while experimental work supports the hypothesis that it also contributes to neurodegeneration. Energy deficit, oxidative stress, demyelination, and defective neurotransmission are demonstrated arsenic effects, but it remains unclear whether synaptic structure is also affected. Employing both a triple-transgenic Alzheimer’s disease model and Wistar rats, the cortical microstructure and synapses were analyzed under chronic arsenic exposure. Male animals were studied at 2 and 4 months of age, after exposure to 3 ppm sodium arsenite in drinking water during gestation, lactation, and postnatal development. Through nuclear magnetic resonance, diffusion-weighted images were acquired and anisotropy (integrity; FA) and apparent diffusion coefficient (dispersion degree; ADC) metrics were derived. Postsynaptic density protein and synaptophysin were analyzed by means of immunoblot and immunohistochemistry, while dendritic spine density and morphology of cortical pyramidal neurons were quantified after Golgi staining. A structural reorganization of the cortex was evidenced through high-ADC and low-FA values in the exposed group. Similar changes in synaptic protein levels in the 2 models suggest a decreased synaptic connectivity at 4 months of age. An abnormal dendritic arborization was observed at 4 months of age, after increased spine density at 2 months. These findings demonstrate alterations of cortical synaptic connectivity and microstructure associated to arsenic exposure appearing in young rodents and adults, and these subtle and non-adaptive plastic changes in dendritic spines and in synaptic markers may further progress to the degeneration observed at older ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amal H, Gong G, Yang H, Joughin BA, Wang X, Knutson CG, Kartawy M, Khaliulin I, Wishnok JS, Tannenbaum SR (2020) Low doses of arsenic in a mouse model of human exposure and in neuronal culture lead to S-nitrosylation of synaptic proteins and apoptosis via nitric oxide. Int J Mol Sci 21(11):3948

    CAS  PubMed Central  Google Scholar 

  • Aung KH, Kyi-Tha-Thu C, Sano K, Nakamura K, Tanoue A, Nohara K, Kakeyama M, Tohyama C, Tsukahara S, Maekawa F (2016) Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice. Front Neurosci 10:137

    PubMed  PubMed Central  Google Scholar 

  • Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry KP, Nedivi E (2017) Spine dynamics: are they all the same? Neuron 96:43–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bittner T, Fuhrmann M, Burgold S, Ochs SM, Hoffmann N, Mitteregger G, Kretzschmar H, LaFerla FM, Herms J (2010) Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice. PLoS ONE 5(11):e15477

    PubMed  PubMed Central  Google Scholar 

  • Bommarito PA, Fry RC (2016) Developmental windows of susceptibility to inorganic arsenic: a survey of current toxicologic and epidemiologic data. Toxicol Res (Camb) 5(6):1503–1511. https://doi.org/10.1039/C6TX00234J

    Article  CAS  Google Scholar 

  • Bondy SC, Campbell A (2017) Water quality and brain function. Int J Environ Res Public Health 15:2

    PubMed Central  Google Scholar 

  • Calderón J, Navarro ME, Jiménez-Capdeville ME, Santos-Diaz MA, Golden A, Rodríguez-Leyva I, Borja-Aburto V, Díaz-Barriga F (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85:69–76

    PubMed  Google Scholar 

  • Chandravanshi LP, Shukla RK, Sultana S, Pant AB, Khanna VK (2014) Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 38:91–104. https://doi.org/10.1016/j.ijdevneu.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  • Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK (2019) Dendritic spines: revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 8(92):161–193

    Google Scholar 

  • Cieślik M, Gassowska-Dobrowolska M, Zawadzka A, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Czapski GA, Adamczyk A (2021) The synaptic dysregulation in adolescent rats exposed to maternal immune activation. Front Mol Neurosci 13:555290

    PubMed  PubMed Central  Google Scholar 

  • Colgan LA, Yasuda R (2014) Plasticity of dendritic spines: sub compartmentalization of signaling. Annu Rev Physiol 76:365–385

    CAS  PubMed  Google Scholar 

  • Dickstein DL, Brautigam H, Stockton SD Jr, Schmeidler J, Hof PR (2010) Changes in dendritic complexity and spine morphology in transgenic mice expressing human wild-type tau. Brain Struct Funct 214(2–3):161–179

    PubMed  PubMed Central  Google Scholar 

  • Dixit S, Mehra RD, Dhar P (2020) Effect of α-lipoic acid on spatial memory and structural integrity of developing hippocampal neurons in rats subjected to sodium arsenite exposure. Environ Toxicol Pharmacol 75:103323

    CAS  PubMed  Google Scholar 

  • Edwards M, Hall J, Gong G, O’Bryant SE (2014) Arsenic exposure, AS3MT polymorphism, and neuropsychological functioning among rural dwelling adults and elders: a cross-sectional study. Environ Health 13(1):15

    PubMed  PubMed Central  Google Scholar 

  • Gąssowska M, Baranowska-Bosiacka I, Moczydłowska J, Frontczak-Baniewicz M, Gewartowska M, Strużyńska L, Gutowska I, Chlubek D, Adamczyk A (2016) Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring. Toxicology 373:13–29

    PubMed  Google Scholar 

  • González-Burgos I, Tapia-Arizmendi G, Feria-Velasco A (1992) Golgi method without osmium tetroxide for the study of the central nervous system. Biotech Histochem 67:288–296

    PubMed  Google Scholar 

  • Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, Arifeen SE, Huda SN, Vahter M (2011) Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 40:1593–1604

    CAS  PubMed  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2(12):880–888

    CAS  PubMed  Google Scholar 

  • Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, Nabulsi N, Matuskey D, Angarita GA, Pietrzak RH, Duman RS, Sanacora G, Krystal JH, Carson RE, Esterlis I (2019) Lower synaptic density is associated with depression severity and network alterations. Nat Commun 10(1):1529

    PubMed  PubMed Central  Google Scholar 

  • Hsieh RL, Huang YL, Shiue HS, Huang SR, Lin MI, Mu SC, Chung CJ, Hsueh YM (2014) Arsenic methylation capacity and developmental delay in preschool children in Taiwan. Int J Hyg Environ Health 217:678–686

    CAS  PubMed  Google Scholar 

  • Inder TE, Huppi PS, Warfield S, Kikinis R, Zientara GP, Barnes PD, Jolesz F, Volpe JJ (1999) Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760

    CAS  PubMed  Google Scholar 

  • Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33(3):121–129

    CAS  PubMed  Google Scholar 

  • Kassem MS, Lagopoulos J, Stait-Gardner T, Price WS, Chohan TW, Arnold JC, Hatton SN, Bennett MR (2013) Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses. Mol Neurobiol 47(2):645–661

    CAS  PubMed  Google Scholar 

  • Lope-Piedrafita S (2018) Diffusion tensor imaging (DTI). Meth Mol Biol 1718:103–116

    CAS  Google Scholar 

  • Luo JH, Qiu ZQ, Shu WQ, Zhang YY, Zhang L, Chen JA (2009) Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol Lett 184(2):121–125

    CAS  PubMed  Google Scholar 

  • Luo JH, Qiu ZQ, Zhang L, Shu WQ (2012) Arsenite exposure altered the expression of NMDA receptor and postsynaptic signaling proteins in rat hippocampus. Toxicol Lett 211(1):39–44

    CAS  PubMed  Google Scholar 

  • Maekawa F, Tsuboib T, Oya M, Aung KH, Tsukahara S, Pellerin L, Nohara K (2013) Effects of sodium arsenite on neurite outgrowth and glutamate AMPA receptor expression in mouse cortical neurons. Neurotoxicology 37:197–206

    CAS  PubMed  Google Scholar 

  • Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado JM, Niño-Moreno P, Doniz L, Saavedra-Alanís V, Castillo CG, Santoyo ME, González-Amaro R, Jiménez-Capdeville ME (2011) Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int 58(5):574–581

    PubMed  Google Scholar 

  • Miguel PM, Pereira LO, Silveira PP, Meaney MJ (2019) Early environmental influences on the development of children’s brain structure and function. Dev Med Child Neurol 61(10):1127–1133

    PubMed  Google Scholar 

  • National Research Council (US) Committee on Guidelines for the Use of Animals in Neuroscience and Behavioral Research (2003) Guidelines for the care and use of mammals in neuroscience and behavioral research. National Academies Press, Washington

    Google Scholar 

  • Niño SA, Martel-Gallegos G, Castro-Zavala A, Ortega-Berlanga B, Delgado JM, Hernandez-Mendoza H, Romero-Guzman E, Ríos-Lugo J, Rosales-Mendoza S, Jiménez-Capdeville ME, Zarazúa S (2018) Chronic arsenic exposure increases Aβ(1–42) production and receptor for advanced glycation end products expression in rat brain. Chem Res Toxicol 31:13–21

    PubMed  Google Scholar 

  • Niño SA, Morales-Martínez A, Chi-Ahumada E, Carrizales L, Salgado-Delgado R, Pérez-Severiano F, Díaz-Cintra S, Jiménez-Capdeville ME, Zarazúa S (2019) Arsenic exposure contributes to the bioenergetic damage in an Alzheimer’s disease model. ACS Chem Neurosci 10:323–336

    PubMed  Google Scholar 

  • Niño SA, Chi-Ahumada E, Ortíz J, Zarazua S, Concha L, Jiménez-Capdeville ME (2020) Demyelination associated with chronic arsenic exposure in Wistar rats. Toxicol Appl Pharmacol 393:114955

    PubMed  Google Scholar 

  • O’Bryant SE, Edwards M, Menon CV, Gong G, Barber R (2011) Long-term low-level arsenic exposure is associated with poorer neuropsychological functioning: a Project FRONTIER study. Int J Environ Res Public Health 8:861–874

    PubMed  PubMed Central  Google Scholar 

  • Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    CAS  PubMed  Google Scholar 

  • Ota KT, Monsey MS, Wu MS, Schafe GE (2010) Synaptic plasticity and NO-cGMP-PKG signaling regulate pre- and postsynaptic alterations at rat lateral amygdale synapses following fear conditioning. PLoS ONE 5(6):e11236

    PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, London

    Google Scholar 

  • Ramos-Chávez LA, Rendón-López CR, Zepeda A, Silva-Adaya D, Del Razo LM, Gonsebatt ME (2015) Neurological effects of inorganic arsenic exposure: altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front Cell Neurosci 9(9):21

    PubMed  PubMed Central  Google Scholar 

  • Ríos R, Zarazúa S, Santoyo ME, Sepúlveda-Saavedra J, Romero-Díaz V, Jiménez V, Pérez-Severiano F, Vidal-Cantú G, Delgado JM, Jiménez-Capdeville ME (2009) Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 261(1–2):68–75

    PubMed  Google Scholar 

  • Rodríguez VM, Carrizales L, Jiménez-Capdeville ME, Dufour L, Giordano M (2001) The effects of sodium arsenite exposure on behavioral parameters in the rat. Brain Res Bull 55(2):301–308

    PubMed  Google Scholar 

  • Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, García-Vargas G, Del Carmen CM, Cebrián ME, Stoltzfus RJ (2007) Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect 115:1371–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin OH (2014) Exocytosis and synaptic vesicle function. Compr Physiol 4:149–175

    PubMed  Google Scholar 

  • Smeester L, Fry RC (2018) Long-term health effects and underlying biological mechanisms of developmental exposure to arsenic. Curr Environ Health Rep 5:134–144

    CAS  PubMed  Google Scholar 

  • Spires-Jones TL, Meyer-Luehmann M, Osetek JD, Stern EA, Bacskai BJ, Hyman BT (2007) Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am J Pathol 171(4):1304–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava P, Dhuriya YK, Kumar V, Srivastava A, Gupta R, Shukla RK, Yadav RS, Dwivedi HN, Pant AB, Khanna VK (2018) PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: neuroprotective role of curcumin. Neurotoxicology 67:190–205

    CAS  PubMed  Google Scholar 

  • Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RAJ, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID (2008) Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60(4):642–656

    CAS  PubMed  Google Scholar 

  • Wang H, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I (2005) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45(3):389–403

    CAS  PubMed  Google Scholar 

  • Wang X, Huang X, Zhou L, Chen J, Zhang X, Xu K, Huang Z, He M, Shen M, Chen X, Tang B, Shen L, Zhou Y (2021) Association of arsenic exposure and cognitive impairment: a population-based cross-sectional study in China. Neurotoxicology 82:100–107

    CAS  PubMed  Google Scholar 

  • Woodward LJ, Edgin JO, Thompson D, Inder TE (2005) Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain 128:2578–2587

    PubMed  Google Scholar 

  • Zarazúa S, Pérez-Severiano F, Delgado JM, Martínez LM, Ortiz-Pérez D, Jiménez-Capdeville ME (2006) Decreased nitric oxide production in the rat brain after chronic arsenic exposure. Neurochem Res 31:1069–1077

    PubMed  Google Scholar 

  • Zarazúa S, Bürger S, Delgado JM, Jiménez-Capdeville ME, Schliebs R (2011) Arsenic affects expression and processing of amyloid precursor protein (APP) in primary neuronal cells overexpressing the Swedish mutation of human APP. Int J Dev Neurosci 29(4):389–396

    PubMed  Google Scholar 

  • Zhao F, Wang Y, Jin Y, Zhong Y, Yu X, Li G, Lv X, Sun G (2012) Effects of exogenous methionine on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water. Environ Toxicol 27(12):700–706

    CAS  PubMed  Google Scholar 

  • Zhao F, Liao Y, Tang H, Piao J, Wang G, Jin Y (2017) Effects of developmental arsenite exposure on hippocampal synapses in mouse offspring. Metallomics 9(10):1394–1412

    CAS  PubMed  Google Scholar 

  • Zhao F, Wang Z, Liao Y, Wang G, Jin Y (2019) Alterations of NMDA and AMPA receptors and their signaling apparatus in the hippocampus of mouse offspring induced by developmental arsenite exposure. J Toxicol Sci 44(11):777–788

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The help and facilities provided by Azucena Aguilar Vázquez and JTEJ (always and never) are gratefully acknowledged.

Funding

This research was supported by CONACYT (Fellowship 503319 for S.A.N, Grant 293 183078 for I.G.B) and DGAPA-UNAM IN203616 for S.D.-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María E. Jiménez-Capdeville.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niño, S.A., Vázquez-Hernández, N., Arevalo-Villalobos, J. et al. Cortical Synaptic Reorganization Under Chronic Arsenic Exposure. Neurotox Res 39, 1970–1980 (2021). https://doi.org/10.1007/s12640-021-00409-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00409-y

Keywords

Navigation