Skip to main content

Pinocembrin-7-Methylether Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction Through AKT and ERK Pathways

Abstract

The present study aimed to evaluate the neuroprotective effects and underlying mechanisms of pinocembrin-7-methylether (PME), a natural bioflavonoid, in 6-hydroxydopamine (6-OHDA)-induced models of Parkinson’s disease in vivo and in vitro. First, we found that PME decreased apoptosis in 6-OHDA-intoxicated SH-SY5Y cells. PME also blocked several 6-OHDA-induced mitochondrial apoptotic cascades, including loss of mitochondrial membrane potential, caspase 3 and PARP activation, and a decrease in the Bcl-2/Bax ratio. Also, PME suppressed 6-OHDA-induced oxidative stress while increasing antioxidant enzymatic activity. Further investigations indicated that PME significantly enhanced nuclear accumulation of Nrf2, improved ARE promoter activity, and upregulated HO-1 and NQO1 expression levels. In addition, siRNA-mediated Nrf2 knockdown abolished PME-induced anti-oxidative and anti-apoptotic effects. Interestingly, we found that PME promoted phosphorylation of AKT and ERK, whereas pharmacological inhibition of AKT or ERK pathways diminished PME-induced Nrf2 activation and protective actions. Moreover, PME attenuated 6-OHDA-induced loss of dopaminergic neurons and ameliorated locomotor deficiency in zebrafish, supporting the neuroprotective actions of PME in vivo. In summary, we found that PME conferred neuroprotection against 6-OHDA-induced neurotoxicity in PD models in vivo and in vitro. Taken together, our findings suggest that activation of Nrf2/ARE/HO-1 signaling cascades contributes to PME-induced anti-oxidative and neuroprotective actions, which are at least partially mediated by AKT and ERK pathways.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Anis E, Zafeer MF, Firdaus F, Islam SN, Khan AA, Hossain MM (2020) Perillyl alcohol mitigates behavioural changes and limits cell death and mitochondrial changes in unilateral 6-ohda lesion model of Parkinson’s disease Through Alleviation of Oxidative Stress. Neurotox Res 38:461–477

    CAS  Article  Google Scholar 

  • Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY, Tyurin VA, Zhao Q, Belikova NA, Vlasova II, Maeda A, Zhu J, Na HM, Mastroberardino PG, Sparvero LJ, Amoscato AA, Chu CT, Greenamyre JT, Kagan VE (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969

    CAS  Article  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    CAS  Article  Google Scholar 

  • Biolchi AM, de Oliveira DGR, Amaral HD, Campos GAA, Goncalves JC, de Souza ACB, Lima MR, Silva LP, Mortari MR (2020) Fraternine, a Novel Wasp Peptide, Protects against Motor Impairments in 6-OHDA Model of Parkinsonism. Toxins 12

  • Board PG, Menon D (2013) Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta 1830:3267–3288

    CAS  Article  Google Scholar 

  • Borland G, Bird RJ, Palmer TM, Yarwood SJ (2009) Activation of protein kinase Calpha by EPAC1 is required for the ERK- and CCAAT/enhancer-binding protein beta-dependent induction of the SOCS-3 gene by cyclic AMP in COS1 cells. J Biol Chem 284:17391–17403

    CAS  Article  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717

    CAS  Article  Google Scholar 

  • de Lau LML, Giesbergen PCLM, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MMB (2004) Incidence of parkinsonism and Parkinson disease in a general population—the Rotterdam Study. Neurology 63:1240–1244

    Article  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  Article  Google Scholar 

  • Feng CW, Chen NF, Wen ZH, Yang WY, Kuo HM, Sung PJ, Su JH, Cheng SY, Chen WF (2019) In vitro and in vivo neuroprotective effects of stellettin B through anti-apoptosis and the Nrf2/HO-1 pathway. Mar Drugs 17

  • Fonseca-Fonseca LA, Nunez-Figueredo Y, Sanchez JR, Guerra MW, Ochoa-Rodriguez E, Verdecia-Reyes Y, Hernadez RD, Menezes NJ, Costa TCS, de Santana WA, Oliveira JL, Segura-Aguilar J, da Silva VDA, Costa SL (2019) KM-34, a novel antioxidant compound, protects against 6-hydroxydopamine-induced mitochondrial damage and neurotoxicity. Neurotox Res 36:279–291

    CAS  Article  Google Scholar 

  • Frede K, Ebert F, Kipp AP, Schwerdtle T, Baldermann S (2017) Lutein activates the transcription factor Nrf2 in human retinal pigment epithelial cells. J Agric Food Chem 65:5944–5952

    CAS  Article  Google Scholar 

  • Gan L, Johnson JA (2014) Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta 1842:1208–1218

    CAS  Article  Google Scholar 

  • Gao AM, Ke ZP, Shi F, Sun GC, Chen H (2013) Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 206:100–108

    CAS  Article  Google Scholar 

  • Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181:680–689

    CAS  Article  Google Scholar 

  • Jo SH, Kim ME, Cho JH, Lee Y, Lee J, Park YD, Lee JS (2019) Hesperetin inhibits neuroinflammation on microglia by suppressing inflammatory cytokines and MAPK pathways. Arch Pharm Res 42:695–703

    CAS  Article  Google Scholar 

  • Kang KW, Cho IJ, Lee CH, Kim SG (2003) Essential role of phosphatidylinositol 3-kinase-dependent CCAAT/enhancer binding protein beta activation in the induction of glutathione S-transferase by oltipraz. J Natl Cancer I 95:53–66

    CAS  Article  Google Scholar 

  • Kang S, Piao Y, Kang YC, Lim S, Pak YK (2020) Qi-activating quercetin alleviates mitochondrial dysfunction and neuroinflammation in vivo and in vitro. Arch Pharm Res 43:553–566

    CAS  Article  Google Scholar 

  • Khan NM, Sandur SK, Checker R, Sharma D, Poduval TB, Sainis KB (2011) Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calcium-ERK1/2-Nrf2 pathway. Free Radic Biol Med 51:115–128

    CAS  Article  Google Scholar 

  • Ko YH, Kwon SH, Kim SK, Lee BR, Hur KH, Kim YJ, Kim SE, Lee SY, Jang CG (2019) Protective effects of 6,7,4’-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch Pharm Res 42:1081–1091

    CAS  Article  Google Scholar 

  • Kong Y, Fu YJ, Zu YG, Liu W, Wang W, Hua X, Yang M (2009) Ethanol modified supercritical fluid extraction and antioxidant activity of cajaninstilbene acid and pinostrobin from pigeonpea [Cajanus cajan (L.) Mill sp.] leaves. Food Chem 117:152–159

    CAS  Article  Google Scholar 

  • Lei H, Ren RT, Sun Y, Zhang K, Zhao X, Ablat N, Pu XP (2020) Neuroprotective effects of safflower flavonoid extract in 6-hydroxydopamine-induced model of Parkinson’s disease may be related to its anti-inflammatory action. Molecules 25

  • Liu RZ, Fan CX, Zhang ZL, Zhao X, Sun Y, Liu HH, Nie ZX, Pu XP (2017) Effects of Dl-3-n-butylphthalide on Cerebral Ischemia Infarction in Rat Model by Mass Spectrometry Imaging. Int J Mol Sci 18

  • Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 8:115–128

    CAS  Article  Google Scholar 

  • Madduma Hewage SRK, Piao MJ, Kang KA, Ryu YS, Fernando P, Oh MC, Park JE, Shilnikova K, Moon YJ, Shin DO, Hyun JW (2017) Galangin activates the ERK/AKT-driven Nrf2 signaling pathway to increase the level of reduced glutathione in human keratinocytes. Biomol Ther (seoul) 25:427–433

    Article  Google Scholar 

  • Manouchehrabadi M, Farhadi M, Azizi Z, Torkaman-Boutorabi A (2020) Carvacrol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of Parkinson’s disease. Neurotox Res 37:156–170

    CAS  Article  Google Scholar 

  • Marques NF, Massari CM, Tasca CI (2019) Guanosine protects striatal slices against 6-OHDA-induced oxidative damage, mitochondrial dysfunction, and ATP depletion. Neurotox Res 35:475–483

    CAS  Article  Google Scholar 

  • McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Mol Brain Res 141:128–137

    CAS  Article  Google Scholar 

  • Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    CAS  Article  Google Scholar 

  • Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

    CAS  Article  Google Scholar 

  • Park HJ, Lee KS, Zhao TT, Lee KE, Lee MK (2017) Effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine-induced cytotoxicity in PC12 cells. Arch Pharm Res 40:631–639

    CAS  Article  Google Scholar 

  • Patel NK, Bhutani KK (2014) Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-alpha and IL-1 beta production: In vitro and in vivo experimentation. Phytomedicine 21:946–953

    CAS  Article  Google Scholar 

  • Ren J, Yuan L, Wang W, Zhang M, Wang Q, Li S, Zhang L, Hu K (2019) Tricetin protects against 6-OHDA-induced neurotoxicity in Parkinson’s disease model by activating Nrf2/HO-1 signaling pathway and preventing mitochondria-dependent apoptosis pathway. Toxicol Appl Pharmacol 378:114617

    CAS  Article  Google Scholar 

  • Salinas M, Wang J, Rosa de Sagarra M, Martin D, Rojo AI, Martin-Perez J, Ortiz de Montellano PR, Cuadrado A (2004) Protein kinase Akt/PKB phosphorylates heme oxygenase-1 in vitro and in vivo. FEBS Lett 578:90–94

    CAS  Article  Google Scholar 

  • Smeyne M, Smeyne RJ (2013) Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 62:13–25

    CAS  Article  Google Scholar 

  • Truong L, Gonnerman G, Simonich MT, Tanguay RL (2016) Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish. Environ Pollut 218:1089–1093

    CAS  Article  Google Scholar 

  • Tufekci KU, Civi Bayin E, Genc S, Genc K (2011) The Nrf2/ARE pathway: a promising target to counteract mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:314082

    PubMed  PubMed Central  Google Scholar 

  • Varier KM, Sumathi T (2019) Hinokitiol offers neuroprotection against 6-OHDA-induced toxicity in SH-SY5Y neuroblastoma cells by downregulating mRNA expression of MAO/alpha-synuclein/LRRK2/PARK7/PINK1/PTEN genes. Neurotox Res 35:945–954

    CAS  Article  Google Scholar 

  • Wu N, Kong Y, Zu YG, Fu YJ, Liu ZG, Meng RH, Liu X, Efferth T (2011) Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy. Phytomedicine 18:110–118

    CAS  Article  Google Scholar 

  • Xian YF, Ip SP, Lin ZX, Mao QQ, Su ZR, Lai XP (2012) Protective effects of pinostrobin on beta-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 32:1223–1230

    CAS  Article  Google Scholar 

  • Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, Khor TO, Li W, Ma J, Kong AN (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 5:1918–1926

    CAS  Article  Google Scholar 

  • Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    CAS  Article  Google Scholar 

  • Zhang C, Li C, Chen S, Li Z, Jia X, Wang K, Bao J, Liang Y, Wang X, Chen M, Li P, Su H, Wan JB, Lee SMY, Liu K, He C (2017) Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 11:1–11

    Article  Google Scholar 

  • Zhang LQ, Sa F, Chong CM, Wang Y, Zhou ZY, Chang RC, Chan SW, Hoi PM, Yuen Lee SM (2015) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3beta pathways. J Ethnopharmacol 170:8–15

    CAS  Article  Google Scholar 

Download references

Funding

This research was funded by grants from the Guangdong Basic and Applied Basic Research Foundation (2020A1515110899); Educational Commission of Guangdong Province, China (2019KQNCX118); Medical Scientific Research Foundation of Guangdong Province, China (A2020396) and College Student Laboratory Opening Project of Guangzhou Medical University, China (01-408-2102053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simon Ming-Yuen Lee or Chu-Wen Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, ZC., Fu, JJ., Dang, YY. et al. Pinocembrin-7-Methylether Protects SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity via Modulating Nrf2 Induction Through AKT and ERK Pathways. Neurotox Res 39, 1323–1337 (2021). https://doi.org/10.1007/s12640-021-00376-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00376-4

Keywords

  • Pinocembrin-7-methylether
  • Parkinson’s disease
  • 6-OHDA
  • Oxidative stress
  • Nrf2 induction