Skip to main content

Advertisement

Log in

Neurodegenerative Implications of Neuronal Cytoplasmic Protein Dysfunction in Response to Environmental Contaminants

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases account for a significant portion of public health concerns particularly in the aging population. The dysfunction of interfilament proteins has been identified as a key event in the initiation of neurodegeneration and subsequent progression to neurodegenerative diseases. In addition, several studies have found associations between the dysfunction of interfilament proteins and exposure to environmental contaminants. Therefore, in this review, the role of interfilament proteins in neuronal cells, their connection to neurotoxicity from environmental contaminants, and finally the resulting neurodegeneration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adya KA, Inamadar AC, Janagond AB, Palit A (2020) Epidermolytic nevus: an instance of mosaic epidermolytic ichthyosis. Indian Dermatology Online Journal 11(2):272

    PubMed  PubMed Central  Google Scholar 

  • Agam G, Damri O, Bar-Yosef T (2019) Dual role of autophagy in diseases of the central nervous system. Frontiers in cellular neuroscience 13:196

    PubMed  PubMed Central  Google Scholar 

  • Al Mamun, A., M. S. Uddin, M. T. Kabir, S. Khanum, M. S. Sarwar, B. Mathew, A. Rauf, M. Ahmed and G. M. Ashraf (2020). "Exploring the promise of targeting ubiquitin-proteasome system to combat Alzheimer’s disease." Neurotoxicity Research: 1–10.

  • Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7(11):603–615

    CAS  PubMed  Google Scholar 

  • Attoff K, Kertika D, Lundqvist J, Oredsson S, Forsby A (2016) Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17. 2 and the neuroblastoma cell line SH-SY5Y. Toxicol In Vitro 35:100–111

    CAS  PubMed  Google Scholar 

  • Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Suñol C, van Thriel C, Whelan M, Fritsche E (2015) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45(1):83–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H (2004) The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 148(2):137–152

    PubMed  Google Scholar 

  • Barnes JR, Mukherjee B, Rogers BC, Nafar F, Gosse M, Parsons MP (2020) The relationship between glutamate dynamics and activity-dependent synaptic plasticity. J Neurosci 40(14):2793–2807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bott CJ, Winckler B (2020) Intermediate filaments in developing neurons: beyond structure. Cytoskeleton 77(3–4):110–128

    PubMed  Google Scholar 

  • Brady, S. (2005). Basic neurochemistry: molecular, cellular and medical aspects, Elsevier.

  • Bragina L, Conti F (2018) Expression of neurofilament subunits at neocortical glutamatergic and GABAergic synapses. Front Neuroanat 12:74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt N, Vierk R, Fester L, Anstötz M, Zhou L, Heilmann LF, Kind S, Steffen P, Rune GM (2020) Sex-specific difference of hippocampal synaptic plasticity in response to sex neurosteroids. Cereb Cortex 30(4):2627–2641

    PubMed  Google Scholar 

  • Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A (2001) Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27(1):117–120

    CAS  PubMed  Google Scholar 

  • Brown SC, Torelli S, Ugo I, De Biasia F, Howman EV, Poon E, Britton J, Davies KE, Muntoni F (2005) Syncoilin upregulation in muscle of patients with neuromuscular disease. Muscle Nerve 32(6):715–725

    CAS  PubMed  Google Scholar 

  • Cai Q, Jeong YY (2020) Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 9(1):150

    CAS  PubMed Central  Google Scholar 

  • Cairns NJ, Grossman M, Arnold SE, Burn DJ, Jaros E, Perry RH, Duyckaerts C, Stankoff B, Pillon B, Skullerud K, Cruz-Sanchez FF, Bigio EH, Mackenzie IRA, Gearing M, Juncos JL, Glass JD, Yokoo H, Nakazato Y, Mosaheb S, Thorpe JR, Uryu K, Lee VMY, Trojanowski JQ (2004) Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63(8):1376–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calderone A, Formenti M, Aprea F, Papa M, Alberghina L, Colangelo AM, Bertolazzi P (2016) Comparing Alzheimer’s and Parkinson’s diseases networks using graph communities structure. BMC Syst Biol 10(1):25

    PubMed  PubMed Central  Google Scholar 

  • Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid β-peptides. J Neurosci Res 60(1):65–72

    CAS  PubMed  Google Scholar 

  • Chen Y, Xie HQ, Sha R, Xu T, Zhang S, Fu H, Xia Y, Liu Y, Xu L, Zhao B (2020) 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin and up-regulation of neurofilament expression in neuronal cells: evaluation of AhR and MAPK pathways. Environ Int 134:105193

    CAS  PubMed  Google Scholar 

  • Cho TM, Tiffany-Castiglioni E (2004) Neurofilament 200 as an indicator of differences between mipafox and paraoxon sensitivity in Sy5Y neuroblastoma cells. Journal of Toxicology and Environmental Health, Part A 67(13):987–1000

    CAS  Google Scholar 

  • Coulombe PA, Kerns ML, Fuchs E (2009) Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J Clin Investig 119(7):1784–1793

    CAS  PubMed  Google Scholar 

  • Dawson G, Seabrook G, Zheng H, Smith D, Graham S, G. O’dowd, B. Bowery, S. Boyce, M. Trumbauer and H. Chen, (1999) Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the β-amyloid precursor protein. Neuroscience 90(1):1–13

    CAS  PubMed  Google Scholar 

  • De Luca C, Colangelo AM, Virtuoso A, Alberghina L, Papa M (2020) Neurons, glia, extracellular matrix and neurovascular unit: a systems biology approach to the complexity of synaptic plasticity in health and disease. Int J Mol Sci 21(4):1539

    PubMed Central  Google Scholar 

  • Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, Van den Haute C, Spittaels K, Umans L, Serneels L, Thiry E (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22(9):3445–3453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasolo, A. (2011). The theory of evolution and its impact, Springer Milan.

  • Ferrer, I., P. Andrés-Benito, M. V. Zelaya, M. E. E. Aguirre, M. Carmona, K. Ausín, M. Lachén-Montes, J. Fernández-Irigoyen, E. Santamaría and J. A. del Rio (2020). "Familial globular glial tauopathy linked to MAPT mutations: molecular neuropathology and seeding capacity of a prototypical mixed neuronal and glial tauopathy." Acta Neuropathologica: 1–37.

  • Gao J, Naughton SX, Beck WD, Hernandez CM, Wu G, Wei Z, Yang X, Bartlett MG, Terry AV Jr (2017) Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology 62:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Naughton SX, Wulff H, Singh V, Beck WD, Magrane J, Thomas B, Kaidery NA, Hernandez CM, Terry AV (2016) Diisopropylfluorophosphate impairs the transport of membrane-bound organelles in rat cortical axons. J Pharmacol Exp Ther 356(3):645–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grad LI, Rouleau GA, Ravits J, Cashman NR (2017) Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harbor perspectives in medicine 7(8):a024117

    PubMed  PubMed Central  Google Scholar 

  • Guo, W., K. S. Dittlau and L. Van Den Bosch (2020). Axonal transport defects and neurodegeneration: molecular mechanisms and therapeutic implications. Seminars in cell & developmental biology, Elsevier.

  • Hargreaves, A. J., M. Sachana and J. Flaskos (2019). Cytoskeletal disruption as a biomarker of developmental neurotoxicity. Biomarkers in Toxicology, Elsevier: 1033–1046.

  • Hashimoto R, Nakamura Y, Komai S, Kashiwagi Y, Tamura K, Goto T, Aimoto S, Kaibuchi K, Shiosaka S, Takeda M (2000) Site-specific phosphorylation of neurofilament-L is mediated by calcium/calmodulin-dependent protein kinase II in the apical dendrites during long-term potentiation. J Neurochem 75(1):373–382

    CAS  PubMed  Google Scholar 

  • Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32(1):40–51

    CAS  PubMed  Google Scholar 

  • Homma, T. and J. Fujii (2020). "Emerging connections between oxidative stress, defective proteolysis, and metabolic diseases." Free Radical Research: 1–16.

  • Kedia N, Arhzaouy K, Pittman SK, Sun Y, Batchelor M, Weihl CC, Bieschke J (2019) Desmin forms toxic, seeding-competent amyloid aggregates that persist in muscle fibers. Proc Natl Acad Sci 116(34):16835–16840

    CAS  PubMed  Google Scholar 

  • Kimmelman J (2018) Better to be in the placebo arm for trials of neurological therapies? Cell Transplant 27(4):677–681

    PubMed  PubMed Central  Google Scholar 

  • Klement, W., F. Oliviero, G. Gangarossa, E. Zub, F. De Bock, I. Forner, M. Blaquiere, F. Lasserre, J.-M. Pascussi and T. Maurice (2020). "Life-long dietary pesticides cocktail induces astrogliosis along with behavioral adaptations and activates p450 metabolic pathways." Neuroscience.

  • Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) AlaSOPro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    PubMed  Google Scholar 

  • Kurup N, Li Y, Goncharov A, Jin Y (2018) Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons. Proc Natl Acad Sci 115(12):3114–3119

    CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122(20):3589–3594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, Savalle M, Nemani V, Chaudhry FA, Edwards RH (2006) α-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26(46):11915–11922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv-European Journal of Physiology 460(2):525–542

    CAS  PubMed  Google Scholar 

  • Lee H-G, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends in molecular medicine 11(4):164–169

    CAS  PubMed  Google Scholar 

  • Liu Q, Xie F, Siedlak S, Nunomura A, Honda K, Moreira P, Zhua X, Smith M, Perry G (2004) Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Sciences CMLS 61(24):3057–3075

    CAS  PubMed  Google Scholar 

  • Magalingam KB, Radhakrishnan A, Ping NS, Haleagrahara N (2018) Current concepts of neurodegenerative mechanisms in Alzheimer’s disease. Biomed Res Int 2018:3740461

    PubMed  PubMed Central  Google Scholar 

  • Maiuri T, Mocle AJ, Hung CL, Xia J, van Roon-Mom WM, Truant R (2017) Huntingtin is a scaffolding protein in the ATM oxidative DNA damage response complex. Hum Mol Genet 26(2):395–406

    CAS  PubMed  Google Scholar 

  • Mateos-Aparicio P, Rodríguez-Moreno A (2020) Calcium dynamics and synaptic plasticity. Springer, Calcium Signaling, pp 965–984

    Google Scholar 

  • Mattsson N, Cullen NC, Andreasson U, Zetterberg H, Blennow K (2019) Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA neurology 76(7):791–799

    PubMed  PubMed Central  Google Scholar 

  • Mertens J, Stüber K, Poppe D, Doerr J, Ladewig J, Brüstle O, Koch P (2013a) Embryonic stem cell-based modeling of tau pathology in human neurons. Am J Pathol 182(5):1769–1779

    CAS  PubMed  Google Scholar 

  • Mertens J, Stüber K, Poppe D, Doerr J, Ladewig J, Brüstle O, Koch P (2013b) Embryonic stem cell-based modeling of tau pathology in human neurons. The American journal of pathology 182(5):1769–1779

    CAS  PubMed  Google Scholar 

  • Montagna E, Dorostkar MM, Herms J (2017) The role of APP in structural spine plasticity. Frontiers in molecular neuroscience 10:136

    PubMed  PubMed Central  Google Scholar 

  • Müller M, Bhattacharya SS, Moore T, Prescott Q, Wedig T, Herrmann H, Magin TM (2009) Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum Mol Genet 18(6):1052–1057

    PubMed  Google Scholar 

  • Murphy-Royal C, Johnston AD, Boyce AK, Diaz-Castro B, Institoris A, Peringod G, Zhang O, Stout RF, Spray DC, Thompson RJ (2020) Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nature communications 11(1):1–18

    Google Scholar 

  • O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka M, Kudo H, Sugama N, Asami Y, Takehana M (2008) The function of filensin and phakinin in lens transparency. Molecular vision 14:815–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olanow CW, McNaught KSP (2006) Ubiquitin–proteasome system and Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society 21(11):1806–1823

    Google Scholar 

  • Patil V, Patil AA, Patil S, Khairnar N, Tarwal N, Vanalakar S, Bulakhe R, In I, Patil P, Dongale T (2020) Bipolar resistive switching, synaptic plasticity and non-volatile memory effects in the solution-processed zinc oxide thin film. Mater Sci Semicond Process 106:104769

    CAS  Google Scholar 

  • Peng, C., J. Q. Trojanowski and V. M.-Y. Lee (2020). "Protein transmission in neurodegenerative disease." Nature Reviews Neurology: 1–14.

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(7):S10–S17

    PubMed  Google Scholar 

  • Roth RH, Cudmore RH, Tan HL, Hong I, Zhang Y, Huganir RL (2020) “Cortical synaptic AMPA receptor plasticity during motor learning.” Neuron 105(5):895–908

    CAS  PubMed  Google Scholar 

  • Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    CAS  PubMed  Google Scholar 

  • Roy S (2020) Finding order in slow axonal transport. Curr Opin Neurobiol 63:87–94

    CAS  PubMed  Google Scholar 

  • Seki T, Kanagawa M, Kobayashi K, Kowa H, Yahata N, Maruyama K, Iwata N, Inoue H, Toda T (2020) Galectin 3–binding protein suppresses amyloid-β production by modulating β-cleavage of amyloid precursor protein. J Biol Chem 295(11):3678–3691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, A., J. Morris and M. Wray (2020). "Pathogenesis of Alzheimer’s disease: multiple interacting causes against which amyloid precursor protein protects." Medical Hypotheses: 110035.

  • Sindi RA, Harris W, Arnott G, Flaskos J, Mills CL, Hargreaves AJ (2016) Chlorpyrifos-and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2. Toxicol Appl Pharmacol 308:20–31

    CAS  PubMed  Google Scholar 

  • Skelding KA, Rostas JA (2020) Regulation of multifunctional calcium/calmodulin stimulated protein kinases by molecular targeting. Springer, Calcium Signaling, pp 649–679

    Google Scholar 

  • Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR, Bilkey DK, Tate WP, Abraham WC (2008) Endogenous secreted amyloid precursor protein-α regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiology of disease 31(2):250–260

    CAS  PubMed  Google Scholar 

  • Tolledo, C., M. R. Stocco, S. Miksys, F. J. Gonzalez and R. F. Tyndale (2020). "Human CYP2D6 is functional in brain in vivo: evidence from humanized CYP2D6 transgenic mice." Molecular Neurobiology: 1–12.

  • Trojan, J. and A. Ly (2017). Neoplastic development of CNS: 38–59.

  • van Spaendonck-Zwarts KY, van Hessem L, Jongbloed JD, de Walle HE, Capetanaki Y, van der Kooi AJ, van Langen IM, van den Berg MP, van Tintelen JP (2011) Desmin-related myopathy. Clin Genet 80(4):354–366

    PubMed  Google Scholar 

  • Vaquer-Alicea, J. and M. I. Diamond (2019). "Propagation of protein aggregation in neurodegenerative diseases." Annual review of biochemistry 88.

  • Vigouroux, C. and G. Bonne (2013). Laminopathies: one gene, two proteins, five diseases. Madame Curie Bioscience Database [Internet], Landes Bioscience.

  • Wang H, Pan S, Yang X, Zhu B, Wang D (2014) Oxidative phosphorylated neurofilament protein M protects spinal cord against ischemia/reperfusion injury. Neural regeneration research 9(18):1672–1677

    PubMed  PubMed Central  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) “Learning induces long-term potentiation in the hippocampus.” Science 313(5790):1093–1097

    CAS  PubMed  Google Scholar 

  • Yuan A, Nixon RA (2016) Specialized roles of neurofilament proteins in synapses: relevance to neuropsychiatric disorders. Brain Res Bull 126(Pt 3):334–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan A, Sershen H, Basavarajappa B, Kumar A, Hashim A, Berg M, Lee J-H, Sato Y, Rao MV, Mohan PS (2015) Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Molecular psychiatry 20(8):986–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan A, Sershen H, Veeranna BS, Basavarajappa A, Kumar A, Hashim M, Berg JH, Lee Y, Sato MV, Rao PS, Mohan V, Dyakin JP, Julien VMY, Lee and R. A. Nixon, (2015) Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Molecular psychiatry 20(8):986–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahra W, Rai SN, Birla H, Singh SS, Dilnashin H, Rathore AS, Singh SP (2020) The global economic impact of neurodegenerative diseases: opportunities and challenges. Springer, Bioeconomy for Sustainable Development, pp 333–345

    Google Scholar 

  • Zieman A, Coulombe P (2020) Pathophysiology of pachyonychia congenita-associated palmoplantar keratoderma: new insights into skin epithelial homeostasis and avenues for treatment. Br J Dermatol 182(3):564–573

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest E. Smith.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osemwegie, O., Ramkumar, S. & Smith, E.E. Neurodegenerative Implications of Neuronal Cytoplasmic Protein Dysfunction in Response to Environmental Contaminants. Neurotox Res 39, 533–541 (2021). https://doi.org/10.1007/s12640-020-00308-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00308-8

Keywords

Navigation