Skip to main content
Log in

Chronic Exposure to WIN55,212-2 During Adolescence Alters Prefrontal Dopamine Turnover and Induces Sensorimotor Deficits in Adult Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest that chronic exposure to cannabinoids during adolescence may increase the risk of schizophrenia. Studies of the disorder have identified altered cortical dopaminergic neurotransmission. In this study, we hypothesised that heightened endocannabinoid system activation via chronic exposure to a highly potent cannabinoid receptors agonist in adolescent rats would cause long-lasting neurobiological changes that may dramatically alter expression and functions of dopamine metabolising enzymes, comethyl-o-transferase (COMT) and monoamine oxidases MAO-A and MAO-B. To test this hypothesis, adult male rats (70 PND) undergoing chronic treatment of the highly potent and non-selective CB agonist WIN55,212-2 (1.2 mg/kg) during adolescence (PND 30–50) were subjected after 20 days washout period to prepulse inhibition of acoustic startle test (PPI) to confirm cannabinoid-induced sensorimotor-gating impairments and afterwards examined for COMT, MAO-A and MAO-B expression and activity in the prefrontal cortex. Chronic WIN55,212-2 exposure during adolescence caused disruption of PPI, increased cortical dopamine level, decreased COMT mRNA expression and decreased MAO-A and MAO-B enzymatic activities. These results indicate that chronic exposure to cannabinoids during adolescence induces sensorimotor-gating alterations which likely result from changes in the prefrontal cortex dopaminergic signalling. This has important implications for developing methods of targeting dopamine metabolising enzymes and/or sequelae of its dysregulation in cannabinoid-induced schizoaffective-like behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abboussi O, Tazi A, Paizanis E, El Ganouni S (2014) Chronic exposure to WIN55, 212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis. Pharmacol Biochem Behav 120:95–102

    CAS  PubMed  Google Scholar 

  • Abboussi O, Said N, Fifel K, Lakehayli S, Tazi A, El Ganouni S (2016) Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence. Metab Brain Dis 31(2):321–327

    CAS  PubMed  Google Scholar 

  • Aguilar DD, Giuffrida A, Lodge DJ (2018) Adolescent synthetic cannabinoid exposure produces enduring changes in dopamine neuron activity in a rodent model of schizophrenia susceptibility. Int J Neuropsychopharmacol 21(4):393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A et al (2013) Maturation of the adolescent brain. Neuropsychiatr Dis Treat 9:449

    PubMed  PubMed Central  Google Scholar 

  • Bitsios P, Giakoumaki SG, Frangou S (2005) The effects of dopamine agonists on prepulse inhibition in healthy men depend on baseline PPI values. Psychopharmacology 182(1):144–152

    CAS  PubMed  Google Scholar 

  • Bloomfield MA, Ashok AH, Volkow ND, Howes OD (2016) The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature 539(7629):369–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosia M, Buonocore M, Bechi M, Stere L-M, Silvestri MP, Inguscio E et al (2019) Schizophrenia, cannabis use and catechol-O-methyltransferase (COMT): modeling the interplay on cognition. Prog Neuro-Psychopharmacol Biol Psychiatry 92:363–368

    CAS  Google Scholar 

  • Bossong MG, Niesink RJ (2010) Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia. Prog Neurobiol 92(3):370–385

    CAS  PubMed  Google Scholar 

  • Caballero A, Granberg R, Tseng KY (2016) Mechanisms contributing to prefrontal cortex maturation during adolescence. Neurosci Biobehav Rev 70:4–12

    PubMed  PubMed Central  Google Scholar 

  • Darmani N, Janoyan J, Kumar N, Crim J (2003) Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacol Biochem Behav 75(4):777–787

    CAS  PubMed  Google Scholar 

  • Egan MF, Chrapusta S, Karoum F, Lipska BK, Jed Wyatt R (1996) Effects of chronic neuroleptic treatment on dopamine release: insights from studies using 3-methoxytyramine. J Neural Transm 103(7):777–805. https://doi.org/10.1007/BF01273358

    Article  CAS  PubMed  Google Scholar 

  • Enayatfard L, Rostami F, Nasoohi S, Oryan S, Ahmadiani A, Dargahi L (2013) Dual role of PPAR-γ in induction and expression of behavioral sensitization to cannabinoid receptor agonist WIN55, 212-2. NeuroMolecular Med 15(3):523–535

    CAS  PubMed  Google Scholar 

  • Fitzgerald ML, Shobin E, Pickel VM (2012) Cannabinoid modulation of the dopaminergic circuitry: implications for limbic and striatal output. Prog Neuro-Psychopharmacol Biol Psychiatry 38(1):21–29

    CAS  Google Scholar 

  • French L, Gray C, Leonard G, Perron M, Pike GB, Richer L et al (2015) Early cannabis use, polygenic risk score for schizophrenia and brain maturation in adolescence. JAMA Psychiatry 72(10):1002–1011

    PubMed  PubMed Central  Google Scholar 

  • Galanopoulos A, Polissidis A, Georgiadou G, Papadopoulou-Daifoti Z, Nomikos GG, Pitsikas N, Antoniou K (2014) WIN55,212-2 impairs non-associative recognition and spatial memory in rats via CB1 receptor stimulation. Pharmacol Biochem Behav 124:58–66. https://doi.org/10.1016/j.pbb.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  • Ginovart N, Tournier BB, Moulin-Sallanon M, Steimer T, Ibanez V, Millet P (2012) Chronic Δ 9-tetrahydrocannabinol exposure induces a sensitization of dopamine D 2/3 receptors in the mesoaccumbens and nigrostriatal systems. Neuropsychopharmacology 37(11):2355–2367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes FV, Guimarães FS, Grace AA (2015) Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia. Int J Neuropsychopharmacol 18(2)

  • Götz ME, Breithaupt W, Sautter J, Kupsch A, Schwarz J, Oertel WH, … Gerlach M (1998) Chronic TVP-1012 (rasagiline) dose — activity response of monoamine oxidases A and B in the brain of the common marmoset, Vienna

  • Green B, Young R, Kavanagh D (2005) Cannabis use and misuse prevalence among people with psychosis. Br J Psychiatry 187(4):306–313. https://doi.org/10.1192/bjp.187.4.306

    Article  PubMed  Google Scholar 

  • Hazlett EA, Dawson ME, Schell AM, Nuechterlein KH (2001) Attentional stages of information processing during a continuous performance test: a startle modification analysis. Psychophysiology 38(4):669–677

    CAS  PubMed  Google Scholar 

  • Jentsch JD, Verrico CD, Le D, Roth RH (1998) Repeated exposure to Δ9-tetrahydrocannabinol reduces prefrontal cortical dopamine metabolism in the rat. Neurosci Lett 246(3):169–172

    CAS  PubMed  Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF (1994) 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63(3):972–979

    CAS  PubMed  Google Scholar 

  • Kish SJ (2014) The pathology of methamphetamine use in the human brain. In: The effects of drug abuse on the human nervous system. Elsevier, pp 203–297

  • Kleinridders A, Cai W, Cappellucci L, Ghazarian A, Collins WR, Vienberg SG, Pothos EN, Kahn CR (2015) Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc Natl Acad Sci 112(11):3463–3468

    CAS  PubMed  Google Scholar 

  • Lehner M, Karas-Ruszczyk K, Zakrzewska A, Gryz M, Wislowska-Stanek A, Kolosowska K et al (2018) Chronic stress changes prepulse inhibition after amphetamine challenge: the role of the dopaminergic system. J Physiol Pharmacol 69(3)

  • Lewis D (2017) 58.2 adolescent cannabis use, cortical circuitry and schizophrenia. Schizophr Bull 43(Suppl 1):S30

    PubMed Central  Google Scholar 

  • Li T, Sham P, Vallada H, Xie T, Tang X, Murray R et al (1996) Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 6:131–134

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402–408

  • Long LE, Lind J, Webster M, Weickert CS (2012) Developmental trajectory of the endocannabinoid system in human dorsolateral prefrontal cortex. BMC Neurosci 13(1):87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowin T, Pongratz G, Straub RH (2016) The synthetic cannabinoid WIN55, 212-2 mesylate decreases the production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts by activating CB 2, TRPV1, TRPA1 and yet unidentified receptor targets. J Inflamm 13(1):15

    Google Scholar 

  • Marconi A, Di Forti M, Lewis CM, Murray RM, Vassos E (2016) Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull 42(5):1262–1269

    PubMed  PubMed Central  Google Scholar 

  • Matsuzaka CT, Christofolini D, Ota VK, Gadelha A, Berberian AA, Noto C et al (2017) Catechol-O-methyltransferase (COMT) polymorphisms modulate working memory in individuals with schizophrenia and healthy controls. Braz J Psychiatry 39(4):302–308

    PubMed  PubMed Central  Google Scholar 

  • Perdikaris P, Tsarouchi M, Fanarioti E, Natsaridis E, Mitsacos A, Giompres P (2018) Long lasting effects of chronic WIN55, 212-2 treatment on mesostriatal dopaminergic and cannabinoid systems in the rat brain. Neuropharmacology 129:1–15

    CAS  PubMed  Google Scholar 

  • Powell SB, Weber M, Geyer MA (2011) Genetic models of sensorimotor gating: relevance to neuropsychiatric disorders. In: Behavioral Neurogenetics. Springer, pp 251–318

  • Purves-Tyson T, Owens S, Rothmond D, Halliday G, Double K, Stevens J et al (2017) Putative presynaptic dopamine dysregulation in schizophrenia is supported by molecular evidence from post-mortem human midbrain. Transl Psychiatry 7(1):e1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renard J, Krebs M-O, Le Pen G, Jay TM (2014) Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci 8:361

    PubMed  PubMed Central  Google Scholar 

  • Renard J, Rosen LG, Loureiro M, De Oliveira C, Schmid S, Rushlow WJ, Laviolette SR (2017a) Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb Cortex 27(2):1297–1310

    PubMed  Google Scholar 

  • Renard J, Szkudlarek HJ, Kramar CP, Jobson CE, Moura K, Rushlow WJ, Laviolette SR (2017b) Adolescent THC exposure causes enduring prefrontal cortical disruption of GABAergic inhibition and dysregulation of sub-cortical dopamine function. Sci Rep 7(1):1–14

    CAS  Google Scholar 

  • Roussos P, Giakoumaki S, Rogdaki M, Pavlakis S, Frangou S, Bitsios P (2008) Prepulse inhibition of the startle reflex depends on the catechol O-methyltransferase Val158Met gene polymorphism. Psychol Med 38(11):1651–1658

    CAS  PubMed  Google Scholar 

  • Rubino T, Prini P, Piscitelli F, Zamberletti E, Trusel M, Melis M et al (2015) Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis 73:60–69

    CAS  PubMed  Google Scholar 

  • Schneider M, Koch M (2003) Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28(10):1760–1769

    CAS  PubMed  Google Scholar 

  • Selemon L, Zecevic N (2015) Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry 5(8):e623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson EH, Morud J, Winiger V, Biezonski D, Zhu JP, Bach ME, Malleret G, Polan HJ, Ng-Evans S, Phillips PEM, Kellendonk C, Kandel ER (2014) Genetic variation in COMT activity impacts learning and dopamine release capacity in the striatum. Learn Mem 21(4):205–214. https://doi.org/10.1101/lm.032094.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow N, Geyer M (1993) Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus. Behav Neurosci 107(1):104–117

    CAS  PubMed  Google Scholar 

  • Tanda G, Pontieri FE, Di Chiara G (1997) Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism. Science 276(5321):2048–2050

    CAS  PubMed  Google Scholar 

  • Vaucher J, Keating BJ, Lasserre AM, Gan W, Lyall DM, Ward J et al (2018) Cannabis use and risk of schizophrenia: a Mendelian randomization study. Mol Psychiatry 23(5):1287–1292

    CAS  PubMed  Google Scholar 

  • Wegener N, Koch M (2009) Behavioural disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment. Brain Res 1253:81–91

    CAS  PubMed  Google Scholar 

  • Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A (2017) Pathway-specific dopamine abnormalities in schizophrenia. Biol Psychiatry 81(1):31–42

    CAS  PubMed  Google Scholar 

  • Wu C, Ding Y, Chen B, Gao Y, Wang Q, Wu Z, Lu L, Luo L, Zhang C, Bao X, Yang P, Fan L, Lei M, Li L (2019) Both Val158Met polymorphism of catechol-O-methyltransferase gene and menstrual cycle affect prepulse inhibition but not attentional modulation of prepulse inhibition in younger-adult females. Neuroscience 404:396–406. https://doi.org/10.1016/j.neuroscience.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  • Zammit S, Jones G, Jones SJ, Norton N, Sanders RD, Milham C et al (2004) Polymorphisms in the MAOA, MAOB, and COMT genes and aggressive behavior in schizophrenia. Am J Med Genet B Neuropsychiatr Genet 128(1):19–20

    Google Scholar 

  • Zammit S, Spurlock G, Williams H, Norton N, Williams N, O’Donovan MC, Owen MJ (2007) Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. Br J Psychiatry 191(5):402–407

    PubMed  Google Scholar 

  • Zürcher G, Da Prada M (1982) Rapid and sensitive single-step radiochemical assay for catechol-o-methyltransferase. J Neurochem 38(1):191–195

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Abboussi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboussi, O., Andaloussi, Z.I.L., Chris, A.D. et al. Chronic Exposure to WIN55,212-2 During Adolescence Alters Prefrontal Dopamine Turnover and Induces Sensorimotor Deficits in Adult Rats. Neurotox Res 38, 682–690 (2020). https://doi.org/10.1007/s12640-020-00266-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00266-1

Keywords

Navigation