Skip to main content

Advertisement

Log in

Non-coding RNAs in Ischemic Stroke: Roles in the Neuroinflammation and Cell Death

  • Review Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the leading causes of death and long-term disability worldwide. As an important class of pervasive genes involved in many pathophysiological processes of ischemic stroke, non-coding RNAs (ncRNAs) have received attention in the past decades. ncRNAs are a class of functional RNAs that regulate gene expression in a post-transcriptional manner, and including microRNAs, long non-coding RNAs, and circular RNAs. Several studies have deciphered that ncRNAs have a key role in the ischemic stroke-induced neuroinflammation and cell death via different molecules and pathways. Thus, ncRNAs show great promise as novel molecular targets in ischemic stroke. In this article, we provide an updated review of the current state of our knowledge about the roles of different types of ncRNAs in neuroinflammation and cell death following ischemic stroke, which may facilitate the translation of ncRNAs research into clinical practice to improve the clinical outcome of stroke therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad M, Graham SH (2010) Inflammation after stroke: mechanisms and therapeutic approaches. Translational stroke research 1:74–84

  • Aliaga E, Silhol M, Bonneau N, Maurice T, Arancibia S, Tapia-Arancibia L (2010) Dual response of BDNF to sublethal concentrations of β-amyloid peptides in cultured cortical neurons. Neurobiology of disease 37:208–217

  • Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE (2019a) NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. International Journal of Stroke:1747493019841242

  • Alishahi M, Ghaedrahmati F, Kolagar TA, Winlow W, Nikkar N, Farzaneh M, Khoshnam SE (2019b) Long non-coding RNAs and cell death following ischemic stroke. Metabolic brain disease:1–9

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature biotechnology 29:341

  • Anderson DM et al. (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595-606

  • Arena A, M Iyer A, Milenkovic I, G Kovacs G, Ferrer I, Perluigi M, Aronica E (2017) Developmental expression and dysregulation of miR-146a and miR-155 in Down’s syndrome and mouse models of Down’s syndrome and Alzheimer’s disease Curr Alzheimer Res 14:1305–1317,

  • Bacigaluppi M, Comi G, Hermann DM (2010) Animal models of ischemic stroke. Part two: modeling cerebral ischemia. The open neurology journal 4:34

  • Bai Y et al. (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood–brain barrier integrity. Journal of Neuroscience 38:32-50

  • Bao M-H, Szeto V, Yang BB, Zhu S-Z, Sun H-S, Feng Z-P (2018) Long non-coding RNAs in ischemic stroke. Cell death & disease 9:281

  • Bayoumi AS, Aonuma T, Teoh JP, Tang YL, Kim IM (2018) Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta pharmacologica Sinica 39:1100–1109 doi:https://doi.org/10.1038/aps.2017.196

  • Bazan HA, Hatfield SA, Brug A, Brooks AJ, Lightell Jr DJ, Woods TC (2017) Carotid plaque rupture is accompanied by an increase in the ratio of serum circR-284 to miR-221 levels. Circulation: Cardiovascular Genetics 10:e001720

  • Bhattarai S, Pontarelli F, Prendergast E, Dharap A (2017) Discovery of novel stroke-responsive lncRNAs in the mouse cortex using genome-wide RNA-seq. Neurobiology of disease 108:204–212

  • Bisdas S, Donnerstag F, Ahl B, Bohrer I, Weissenborn K, Becker H (2004) Comparison of perfusion computed tomography with diffusion-weighted magnetic resonance imaging in hyperacute ischemic stroke. Journal of computer assisted tomography 28:747–755

  • Broderick JA, Zamore PD (2011) MicroRNA therapeutics. Gene therapy 18:1104

  • Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M, Zhang ZG (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307

    Article  CAS  Google Scholar 

  • Cardona AE et al. (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nature neuroscience 9:917

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94

  • Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    Article  CAS  Google Scholar 

  • Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochemistry international 111:12–22

  • Chen L-L (2016) The biogenesis and emerging roles of circular RNAs. Nature reviews Molecular cell biology 17:205, , 211

  • Chen Q et al. (2014a) MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell death & disease 5:e1132

  • Chen S, Yin Z-J, Jiang C, Ma Z-Q, Fu Q, Qu R, Ma S-P (2014b) Asiaticoside attenuates memory impairment induced by transient cerebral ischemia–reperfusion in mice through anti-inflammatory mechanism. Pharmacology Biochemistry and Behavior 122:7–15

  • Chen S et al. (2017a) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochemical and biophysical research communications 485:167-173

  • Chen Y, Gao C, Sun Q, Pan H, Huang P, Ding J, Chen S (2017b) MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Frontiers in aging neuroscience 9:232

  • Chen R, Xu X, Huang L, Zhong W, Cui L (2019) The regulatory role of Long Noncoding RNAs in different brain cell types involved in ischemic stroke. Frontiers in Molecular Neuroscience 12

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    Article  CAS  Google Scholar 

  • Chi W et al. (2014) Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain research 1592:22-33

  • Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244 doi:https://doi.org/10.1016/j.nbd.2015.05.003

  • Crowley MG, Liska MG, Borlongan CV (2017) Stem cell therapy for sequestering neuroinflammation in traumatic brain injury: an update on exosome-targeting to the spleen. Journal of neurosurgical sciences 61:291–302

  • Das A, Samidurai A, Salloum FN (2018) Deciphering non-coding RNAs in cardiovascular health and disease. Frontiers in cardiovascular medicine 5:73

  • Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43:2800–2802

  • Dharap A, Bowen K, Place R, Li L-C, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of Cerebral Blood Flow & Metabolism 29:675–687

  • Dharap A, Pokrzywa C, Vemuganti R (2013) Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN neuro 5:AN20130029

  • Dykstra-Aiello C et al. (2016) Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke 47:2896-2903

  • Edbauer D et al. (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373-384

  • Farzaneh M, Attari F, Khoshnam SE (2017) Concise review: LIN28/let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming, and tumorigenicity. Cellular reprogramming 19:289-293

  • Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE (2019) The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Current stem cell research & therapy 14:278–289

  • Fernandes A, Miller-Fleming L, Pais TF (2014) Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 71:3969–3985

    Article  CAS  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  Google Scholar 

  • Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64:303–309

  • Floris G, Zhang L, Follesa P, Sun T (2017) Regulatory role of circular RNAs and neurological disorders. Molecular neurobiology 54:5156–5165

  • Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacological reviews 54:271–284

  • Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470:284

  • Guo D, Ma J, Yan L, Li T, Li Z, Han X, Shui S (2017) Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem 43:182–194

    Article  CAS  Google Scholar 

  • Hameed A, Zafar H, Mylotte D, Sharif F (2017) Recent trends in clot retrieval devices: a review. Cardiology and therapy 6:193–202

  • Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M (2016) MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 91:151-165 doi:https://doi.org/10.1016/j.biomaterials.2016.03.025

  • Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes & development 18:3016-3027

  • Han B, Zhang Y, Zhang Y, Bai Y, Chen X, Huang R, Wu F, Leng S, Chao J, Zhang JH, Hu G, Yao H (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14:1164–1184

    Article  CAS  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384

  • Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proceedings of the National Academy of Sciences 109:18962-18967

  • Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A (2000) Evolution of brain infarction after transient focal cerebral ischemia in mice. Journal of Cerebral Blood Flow & Metabolism 20:937–946

  • He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2019) Mitochondria as a therapeutic target for ischemic stroke. Free Radical Biology and Medicine

  • Heydari E, Alishahi M, Ghaedrahmati F, Winlow W, Khoshnam SE, Anbiyaiee A (2019) The role of non-coding RNAs in neuroprotection and angiogenesis following ischemic stroke. Metabolic brain disease:1–13

  • Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cellular and molecular life sciences : CMLS 75:1071–1098 doi:https://doi.org/10.1007/s00018-017-2688-5

  • Hosomi N, Ban CR, Naya T, Takahashi T, Guo P, Song X-yR, Kohno M (2005) Tumor necrosis factor-α neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism 25:959–967

  • Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  CAS  Google Scholar 

  • Huang W, Liu X, Cao J, Meng F, Li M, Chen B, Zhang J (2015) miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. Journal of Molecular Neuroscience 55:821-829

  • Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834-838

  • Iyengar BR, Choudhary A, Sarangdhar MA, Venkatesh K, Gadgil CJ, Pillai B (2014) Non-coding RNA interact to regulate neuronal development and function. Frontiers in cellular neuroscience 8:47

  • Iyer MK et al. (2015) The landscape of long noncoding RNAs in the human transcriptome. Nature genetics 47:199

  • Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST (2014) microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. Journal of neurochemistry 130:388-401

  • Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nature biotechnology 32:453, , 461

  • Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966

  • Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C (2015) miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. Journal of neurochemistry 134:173-181

  • Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA (2001) Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism 21:1411-1421

  • Jin HY et al. (2015) Transfection of microRNA mimics should be used with caution. Frontiers in genetics 6:340

  • Kang L, Zhang G, Yan Y, Ke K, Wu X, Gao Y, Li J, Zhu L, Wu Q, Zhou Z (2013) The role of HSPA12B in regulating neuronal apoptosis. Neurochem Res 38:311–320

    Article  CAS  Google Scholar 

  • Karreth FA et al. (2011) In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147:382-395

  • Kaur H, Sarmah D, Saraf J, Vats K, Kalia K, Borah A, Yavagal DR, Dave KR, Ghosh Z, Bhattacharya P (2018) Noncoding RNAs in ischemic stroke: time to translate. Ann N Y Acad Sci 1421:19–36

    Article  CAS  Google Scholar 

  • Khoshnam SE, Sarkaki A, Khorsandi L, Winlow W, Badavi M, Moghaddam HF, Farbooda Y (2017a) Vanillic acid attenuates effects of transient bilateral common carotid occlusion and reperfusion in rats. Biomedicine & Pharmacotherapy 96:667–674

  • Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017b) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. Journal of stroke 19:166

  • Khoshnam SE, Winlow W, Farzaneh M (2017c) The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. Journal of Neuropatholgy & Experimental Neurology 76:548–561

  • Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017d) Pathogenic mechanisms following ischemic stroke. Neurological Sciences 38:1167–1186

  • Khoshnam SE, Farbood Y, Moghaddam HF, Sarkaki A, Badavi M, Khorsandi L (2018a) Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metabolic brain disease:1–9

  • Khoshnam SE, Sarkaki A, Rashno M, Farbood Y (2018b) Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life sciences

  • Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest–and starvation-associated repressor of the glucocorticoid receptor. Sci signal 3:ra8-ra8

  • Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T (2013) Cell cycle regulation by long non-coding RNAs. Cellular and molecular life sciences 70:4785–4794

  • Kumar G, Goyal MK, Sahota PK, Jain R (2010) Penumbra, the basis of neuroimaging in acute stroke treatment: current evidence. J Neurol Sci 288:13–24

    Article  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Current biology 14:2162-2167

  • Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nature reviews Drug discovery 13:622–638

  • Li Z, Huang C., Bao C., Chen L., Lin M., Wang X., Zhong G., Yu B., Hu W., Dai L., Zhu P., Chang Z., Wu Q., Zhao Y., Jia Y., Xu P., Liu H., Shan G. (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nature structural & molecular biology 22:256, , 264

  • Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, Zhang C (2016) An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Molecular neurobiology:1–21

  • Li P, Shen M, Gao F, Wu J, Zhang J, Teng F, Zhang C (2017a) An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Mol Neurobiol 54:2901–2921

    Article  CAS  Google Scholar 

  • Li Z, Li J, Tang N (2017b) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1-10

  • Li X, Yang L, Chen L-L (2018) The biogenesis, functions, and challenges of circular RNAs. Molecular cell

  • Lim K-Y, Chua JH, Tan JR, Swaminathan P, Sepramaniam S, Armugam A, Wong PTH, Jeyaseelan K (2010) MicroRNAs in cerebral ischemia. Transl Stroke Res 1:287–303

    Article  CAS  Google Scholar 

  • Liu F, McCullough LD (2011) Middle cerebral artery occlusion model in rodents: methods and potential pitfalls. BioMed Research International 2011

  • Liu X et al. (2013) MicroRNA-124–mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke 44:1973-1980

  • Liu P et al. (2014) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke:STROKEAHA. 114.007482

  • Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, Luo Y (2015a) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 46:513–519

    Article  CAS  Google Scholar 

  • Liu Y, Pan Q., Zhao Y., He C., Bi K., Chen Y., Zhao B., Chen Y., Ma X. (2015b) MicroRNA-155 regulates ROS production, NO generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions. Journal of cellular biochemistry 116:2870–2881

  • Liu X, Hou L, Huang W, Gao Y, Lv X, Tang J (2016) The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Frontiers in cellular neuroscience 10:201

  • Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, Zhao H (2017) Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 8:86535-86547 doi:https://doi.org/10.18632/oncotarget.21238

  • Lu K-h et al (2013) Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 13:461

    Article  Google Scholar 

  • Ma Y et al. (2013) Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1832:57-66

  • Ma Q et al. (2016) MicroRNA-181c exacerbates brain injury in acute ischemic stroke. Aging and disease 7:705

  • Mehta SL, Kim T, Vemuganti R (2015) Long noncoding RNA FosDT promotes ischemic brain injury by interacting with REST-associated chromatin-modifying proteins. Journal of Neuroscience 35:16443–16449

  • Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain research reviews 54:34–66

  • Mehta SL, Pandi G, Vemuganti R (2017) Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke 48:2541–2548

  • Mehta MM, Weinberg SE, Chandel NS (2017) Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology 17:608

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  CAS  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nature structural & molecular biology 20:300

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nature reviews genetics 10:155

  • Miao S, Miao S, Cui R, Yu A, Miao Z (2018) SETD5-AS1 stimulates neuron death in stroke via promoting PTEN expression. Eur Rev Med Pharmacol Sci 22:6035-6041

  • Mirzaei H, Momeni F, Saadatpour L, Sahebkar A, Goodarzi M, Masoudifar A, Kouhpayeh S, Salehi H, Mirzaei HR, Jaafari MR (2018) MicroRNA: relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 233:856–865

    Article  CAS  Google Scholar 

  • Moon J-M, Xu L, Giffard RG (2013) Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of Cerebral Blood Flow & Metabolism 33:1976–1982

  • Morlando M, Ballarino M, Fatica A (2015) Long non-coding RNAs: new players in hematopoiesis and leukemia. Frontiers in medicine 2:23

  • Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiology of aging 26:349–354

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

  • Neo WH et al. (2014) MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression. Journal of Biological Chemistry:jbc. M113. 525493

  • Ng SY, Johnson R, Stanton LW (2012) Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. The EMBO journal 31:522–533

  • Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, Cheng J, Jia J, Zhen X (2015) MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 49:75–85

    Article  CAS  Google Scholar 

  • Noh K-M et al. (2012) Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proceedings of the National Academy of Sciences:201121568

  • Ouyang Y-B, Voloboueva LA, Xu L-J, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. Journal of Neuroscience 27:4253-4260

  • Pastori C, Wahlestedt C (2012) Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA biology 9:860–870

  • Pena-Philippides JC, Yang Y, Bragina O, Hagberg S, Nemoto E, Roitbak T (2014) Effect of pulsed electromagnetic field (PEMF) on infarct size and inflammation after cerebral ischemia in mice. Translational stroke research 5:491–500

  • Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T (2016) In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response 13:287

  • Peng Z, Li J, Li Y, Yang X, Feng S, Han S, Li J (2013) Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. Journal of neuroscience research 91:1349-1362

  • Qi X, Shao M, Sun H, Shen Y, Meng D, Huo W (2017) Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience 348:98–106

    Article  CAS  Google Scholar 

  • Redell JB, Liu Y, Dash PK (2009) Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. Journal of neuroscience research 87:1435–1448

  • Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiological genomics 43:521–528

  • Rybak-Wolf A et al. (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular cell 58:870-885

  • Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358

    Article  CAS  Google Scholar 

  • Saugstad JA (2010) MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. Journal of Cerebral Blood Flow & Metabolism 30:1564-1576

  • Seko Y, Kayagaki N, Seino K-i, Yagita H, Okumura K, Nagai R (2002) Role of Fas/FasL pathway in the activation of infiltrating cells in murine acute myocarditis caused by Coxsackievirus B3. Journal of the American College of Cardiology 39:1399–1403

  • Sepramaniam S, Armugam A, Lim KY, Karolina DS, Swaminathan P, Tan JR, Jeyaseelan K (2010) MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 285:29223–29230

    Article  CAS  Google Scholar 

  • Shen L, Bai Y, Han B, Yao H (2019) Non-coding RNA and neuroinflammation: implications for the therapy of stroke. Stroke and Vascular Neurology:svn-2018-000206

  • Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL, Liu X (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS neuroscience & therapeutics 19:813-819 doi:https://doi.org/10.1111/cns.12142

  • Tan JR, Koo YX, Kaur P, Liu F, Armugam A,  Wong PT, Jeyaseelan K (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11:76–92

  • Tajiri N et al. (2014) Intravenous transplants of human adipose-derived stem cell protect the brain from traumatic brain injury-induced neurodegeneration and motor and cognitive impairments: cell graft biodistribution and soluble factors in young and aged rats. Journal of Neuroscience 34:313-326

  • Tao Z, Zhao H, Wang R, Liu P, Yan F, Zhang C, Ji X, Luo Y (2015) Neuroprotective effect of microRNA-99a against focal cerebral ischemia–reperfusion injury in mice. J Neurol Sci 355:113–119

    Article  CAS  Google Scholar 

  • Tiedt S, Dichgans M (2018) Role of non-coding RNAs in stroke. Stroke 49:3098–3106,

  • Tripathi V et al. (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular cell 39:925-938

  • van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circulation research 110:496–507

  • Varga ZV et al. (2013) MicroRNA-25-dependent up-regulation of NADPH oxidase 4 (NOX4) mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. Journal of molecular and cellular cardiology 62:111-121

  • Vemuganti R (2013) All’s well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochemistry international 63:438-449

  • Wang P, Ren Z, Sun P (2012) Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. J Cell Biochem 113:1868–1874

    Article  CAS  Google Scholar 

  • Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, Wang R, Feng J, Luo Y (2017) Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1–dependent M1 microglial polarization. Stroke 48:2211–2221

    Article  CAS  Google Scholar 

  • Wang S-W, Liu Z, Shi Z-S (2018) Non-coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant 27:1763–1777

    Article  Google Scholar 

  • Wang H, Liao S, Yu J (2019) Abstract WP347: long non-coding RNA TUG1 contributes to microglial activation after oxygen glucose deprivation. Stroke 50:AWP347-AWP347

  • Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, Guo S, Xu J (2016) MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol 53:6809–6817

    Article  CAS  Google Scholar 

  • Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C (2015) Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine 21:197-209

  • Wen Y, Yu Y, Fu X (2017) LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem Biophys Res Commun 487:923–929

    Article  CAS  Google Scholar 

  • Wilhelm M et al. (2014) Mass-spectrometry-based draft of the human proteome. Nature 509:582-587

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes & development 23:1494–1504

  • Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B, Liao W, Ji A (2017) LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol 54:7670–7685

    Article  CAS  Google Scholar 

  • Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Frontiers in cellular neuroscience 8:377

  • Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M (2017) MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48:747–753

    Article  CAS  Google Scholar 

  • Xu Q et al. (2016a) Long non-coding RNA C2dat1 regulates CaMKII δ expression to promote neuronal survival through the NF-κ B signaling pathway following cerebral ischemia. Cell death & disease 7:e2173-e2173

  • Xu Q et al. (2016b) Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell death & disease 7:e2173

  • Xu Q et al. (2016c) Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell death & disease 7:e2173-e2173 doi:https://doi.org/10.1038/cddis.2016.57

  • Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, Zhao H, Yu F, Ping Y, Zhang G, Lan Y, Xiao Y, Li X (2017) A comprehensive overview of lncRNA annotation resources. Brief Bioinform 18:236–249

    CAS  PubMed  Google Scholar 

  • Yan H, Yuan J, Gao L, Rao J, Hu J (2016) Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 337:191–199

    Article  CAS  Google Scholar 

  • Yang N (2015) An overview of viral and nonviral delivery systems for microRNA. International journal of pharmaceutical investigation 5:179

  • Ye J et al. (2018) Ischemic injury-induced CaMKIIδ and CaMKIIγ confer neuroprotection through the NF-κB signaling pathway. Molecular neurobiology:1–14

  • Yilmaz G, Granger DN (2008) Cell adhesion molecules and ischemic stroke. Neurological research 30:783–793

  • Yin K-J, Deng Z, Huang H, Hamblin M, Xie C, Zhang J, Chen YE (2010) miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis 38:17–26

    Article  CAS  Google Scholar 

  • Yin K-J, Hamblin M, Chen YE (2014) Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochemistry international 77:9–16

  • Yonekura I, Kawahara N, Nakatomi H, Furuya K, Kirino T (2004) A model of global cerebral ischemia in C57 BL/6 mice. Journal of Cerebral Blood Flow & Metabolism 24:151-158

  • Yoon J-H, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, de S, Huarte M, Zhan M, Becker KG, Gorospe M (2012) LincRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655

    Article  CAS  Google Scholar 

  • Yuan L, Zhang J, Chen YE, Yin K-J (2015) Long non-coding RNAs mediate cerebrovascular endothelial pathologies in ischemic stroke. Stroke 46:A72-A72

  • Zang Y, Zhou X, Wang Q, Li X, Huang H (2018) LncRNA FIRRE/NF-kB feedback loop contributes to OGD/R injury of cerebral microglial cells. Biochemical and biophysical research communications 501:131–138

  • Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H, Liu J, Wang Y, Fu Y, Yang GY (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21:37–43

    Article  CAS  Google Scholar 

  • Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY (2016) Lentivirus-mediated overexpression of microRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS neuroscience & therapeutics 22:961-969

  • Zhai F, Zhang X, Guan Y, Yang X, Li Y, Song G, Guan L (2012) Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats. Neural regeneration research 7:917

  • Zhan R, Xu K, Pan J, Xu Q, Xu S, Shen J (2017) Long noncoding RNA MEG3 mediated angiogenesis after cerebral infarction through regulating p53/NOX4 axis. Biochemical and biophysical research communications 490:700-706

  • Zhang X, Hamblin MH, Yin K-J (2019) Noncoding RNAs and stroke. The Neuroscientist 25:22–26

  • Zhang L, Wang H (2019) Long non-coding RNA in CNS injuries: a new target for therapeutic intervention. Molecular therapy Nucleic acids 17:754

  • Zhang L, Dong L-Y, Li Y-J, Hong Z, Wei W-S (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. Journal of neuroinflammation 9:211

  • Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  CAS  Google Scholar 

  • Zhang L, Li YJ, Wu XY, Hong Z, Wei WS (2015) Micro RNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. Journal of neurochemistry 132:713-723

  • Zhang J-F et al. (2016a) MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway. Journal of Molecular Neuroscience 58:507-516

  • Zhang J et al. (2016b) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Experimental neurology 277:162-170

  • Zhang B, Wang D, Ji T-F, Shi L, Yu J-L (2017a) Overexpression of lncRNA ANRIL up-regulates VEGF expression and promotes angiogenesis of diabetes mellitus combined with cerebral infarction by activating NF-κB signaling pathway in a rat model. Oncotarget 8:17347

  • Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J (2017b) Long non-coding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. Journal of Neuroscience:3389–3316

  • Zhang X, Tang X, Liu K, Hamblin MH, Yin K-J (2017c) Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci 37:1797–1806

    Article  CAS  Google Scholar 

  • Zhao C, Sun G, Ye P, Li S, Shi Y (2013a) MicroRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Scientific reports 3:1329

  • Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, Luo Y (2013b) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44:1706–1713

    Article  CAS  Google Scholar 

  • Zhou Y, Fu J, Yang L (2018) Circular RNAs and their emerging roles in immune regulation. Frontiers in immunology 9:2977

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifeng Li or Seyed Esmaeil Khoshnam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Dong, X., Zhang, Z. et al. Non-coding RNAs in Ischemic Stroke: Roles in the Neuroinflammation and Cell Death. Neurotox Res 38, 564–578 (2020). https://doi.org/10.1007/s12640-020-00236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00236-7

Keywords

Navigation