Skip to main content

Advertisement

Log in

Kynurenine 3-Monooxygenase Activity in Human Primary Neurons and Effect on Cellular Bioenergetics Identifies New Neurotoxic Mechanisms

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Upregulation of the kynurenine pathway (KP) of tryptophan metabolism is commonly observed in neurodegenerative disease. When activated, L-kynurenine (KYN) increases in the periphery and central nervous system where it is further metabolised to other neuroactive metabolites including 3-hydroxykynurenine (3-HK), kynurenic acid (KYNA) and quinolinic acid (QUIN). Particularly biologically relevant metabolites are 3-HK and QUIN, formed downstream of the enzyme kynurenine 3-monooxygenase (KMO) which plays a pivotal role in maintaining KP homeostasis. Indeed, excessive production of 3-HK and QUIN has been described in neurodegenerative disease including Alzheimer’s disease and Huntington’s disease. In this study, we characterise KMO activity in human primary neurons and identified new mechanisms by which KMO activation mediates neurotoxicity. We show that while transient activation of the KP promotes synthesis of the essential co-enzyme nicotinamide adenine dinucleotide (NAD+), allowing cells to meet short-term increased energy demands, chronic KMO activation induces production of reactive oxygen species (ROS), mitochondrial damage and decreases spare-respiratory capacity (SRC). We further found that these events generate a vicious-cycle, as mitochondrial dysfunction further shunts the KP towards the KMO branch of the KP to presumably enhance QUIN production. These mechanisms may be especially relevant in neurodegenerative disease as neurons are highly sensitive to oxidative stress and mitochondrial impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3-HK:

3-Hydroxykynurenine

AA:

Anthranilic acid

AD:

Alzheimer’s disease

CNS:

Central nervous system

DAPI:

4,6-Diamindino-2-phenylindole

DCF:

2-,7-Dichlorofluorescin

ETS:

Electron transport system

FAD:

Flavin adenine dinucleotide

FCCP:

Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

H2O2 :

Hydrogen peroxide

HD:

Huntington’s Disease

HPLC:

High-performance liquid chromatography

IDO1:

Indoleamine 2,3-dioxygenase 1

IDO2:

Indoleamine 2,3-dioxygenase 2

INF-γ:

Interferon gamma

KAT:

Kynurenine aminotransferase

KMO:

Kynurenine 3-monooxygenase

KP:

Kynurenine pathway

KYN:

Kynurenine

KYNA:

Kynurenic acid

KYNU:

Kynureninase

MR:

Maximal respiration

NAD:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate

NMDA:

N-methyl-D-aspartate

OCR:

Oxygen consumption rate

PBS:

Phosphate-buffered saline

QUIN:

Quinolinic acid

R123:

Rhodamine 123

ROS:

Reactive oxygen species

ROX :

Residual oxygen consumption/non-mitochondrial respiration

RT:

Room temperature

SRC:

Spare respiratory capacity

TDO:

Tryptophan 2,3-dioxygenase

TRP:

Tryptophan

UHPLC:

Ultra-high performance liquid chromatography

α7nAChR:

α-7 nicotinic acetyl choline receptor

ΔΨm :

Mitochondrial membrane potential

References

  • Aguirre E, Rodriguez-Juarez F, Bellelli A, Gnaiger E, Cadenas S (2010) Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. Biochim Biophys Acta 1797:557–565

    Article  CAS  PubMed  Google Scholar 

  • Bender DA, McCreanor GM (1982) The preferred route of kynurenine metabolism in the rat. Biochim Biophys Acta 717:56–60

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Grant R, Adams S, Brew B, Guillemin G (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16:77–86

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD+ metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  Google Scholar 

  • Breton J, Avanzi N, Magagnin S, Covini N, Magistrelli G, Cozzi L, Isacchi A (2000) Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase. Eur J Biochem 267:1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Clark CJ, Mackay GM, Smythe GA, Bustamante S, Stone TW, Phillips RS (2005) Prolonged survival of a murine model of cerebral malaria by kynurenine pathway inhibition. Infect Immun 73:5249–5251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colin-Gonzalez AL, Maldonado PD, Santamaria A (2013) 3-Hydroxykynurenine: an intriguing molecule exerting dual actions in the central nervous system. Neurotoxicology 34:189–204

    Article  CAS  PubMed  Google Scholar 

  • Connor TJ, Starr N, O'Sullivan JB, Harkin A (2008) Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci Lett 441:29–34

    Article  CAS  PubMed  Google Scholar 

  • Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771–777

    Article  CAS  PubMed  Google Scholar 

  • Crozier-Reabe KR, Phillips RS, Moran GR (2008) Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin−peroxo intermediate yet result in the production of hydrogen peroxide. Biochemistry 47:12420–12433

    Article  CAS  PubMed  Google Scholar 

  • Csillik A, Knyihar E, Okuno E, Krisztin-Peva B, Csillik B, Vecsei L (2002) Effect of 3-nitropropionic acid on kynurenine aminotransferase in the rat brain. Exp Neurol 177:233–241

    Article  CAS  PubMed  Google Scholar 

  • Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Fernandez S, Almeida A, Bolaños Juan P (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J 443:3–11

    Article  CAS  PubMed  Google Scholar 

  • Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37:526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, Brew BJ (2001) IFN-β1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interf Cytokine Res 21:1097–1101

    Article  CAS  Google Scholar 

  • Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49:15–23

    Article  PubMed  Google Scholar 

  • Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V, Takikawa O, Brew BJ (2007) Characterization of the kynurenine pathway in human neurons. J Neurosci 27:12884–12892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs KR, Castellano Gonzalez G, Guillemin GJ, Lovejoy DB (2017) Major developments in the design of inhibitors along the kynurenine pathway. Curr Med Chem 24:2471-2495

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Chung MJ, Ha TJ, Choi HN, Jang SJ, Kim SO, Chun MH, Do SI, Choo YK, Park YI (2012) Neuroprotective effects of black soybean anthocyanins via inactivation of ASK1–JNK/p38 pathways and mobilization of cellular sialic acids. Life Sci 90:874–882

    Article  CAS  PubMed  Google Scholar 

  • Kirkman HN, Gaetani GF (1984) Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A 81:4343–4347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konradsson-Geuken A, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, Pellicciari R, Schwarcz R, Bruno JP (2010) Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience 169:1848–1859

    Article  CAS  PubMed  Google Scholar 

  • Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Latini A, Wajner M (2007) In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 50:83–94

    Article  CAS  PubMed  Google Scholar 

  • LeWitt PA, Li J, Lu M, Beach TG, Adler CH, Guo L, the Arizona Parkinson’s Disease C (2013) 3-hydroxykynurenine and other Parkinson's disease biomarkers discovered by metabolomic analysis. Mov Disord 28:1653–1660

    Article  CAS  PubMed  Google Scholar 

  • Mochel F, Durant B, Meng X, O'Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A (2012) Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem 287:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Mrzljak L (2014) A05 targeting Kmo: basic understanding and gaps. J Neurol Neurosurg Psychiatry 85:A2

    Article  Google Scholar 

  • Murphy MP, Holmgren A, Larsson NG, Halliwell B, Chang CJ, Kalyanaraman B, Rhee SG, Thornalley PJ, Partridge L, Gems D, Nystrom T, Belousov V, Schumacker PT, Winterbourn CC (2011) Unraveling the biological roles of reactive oxygen species. Cell Metab 13:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry (5th Ed.). W. H. Freeman, New York

  • Nickens KP, Wikstrom JD, Shirihai OS, Patierno SR, Ceryak S (2013) A bioenergetic profile of non-transformed fibroblasts uncovers a link between death-resistance and enhanced spare respiratory capacity. Mitochondrion 13:662–667

    Article  CAS  PubMed  Google Scholar 

  • Norman JP, Perry SW, Kasischke KA, Volsky DJ, Gelbard HA (2007) HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol 178:869–876

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706

    Article  CAS  PubMed  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3-hydroxykynurenine. Proc Natl Acad Sci U S A 93:12553–12558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    Article  CAS  PubMed  Google Scholar 

  • Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques 50:98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58

    Article  CAS  PubMed  Google Scholar 

  • Pfleger J, He M, Abdellatif M (2015) Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival. Cell Death Dis 6:e1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Reddy TP (2011) Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 8:393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Müller M, Kersten S (2009) Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) but not PPARα serves as a plasma free fatty acid sensor in liver. Mol Cell Biol 29:6257–6267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz M, Guillemin G, Teipel S, Buerger K, Hampel H (2013) Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263:345–352

    Article  PubMed  Google Scholar 

  • Swerdlow RH (2012) Mitochondria and cell bioenergetics: increasingly recognized components and a possible etiologic cause of Alzheimer's disease. Antioxid Redox Signal 16:1434–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Leeds P, Chen RW, Wei W, Leng Y, Bredesen DE, Chuang DM (2000) Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem 75:81–90

    Article  CAS  PubMed  Google Scholar 

  • Wilson K, Auer M, Binnie M, Zheng X, Pham NT, Iredale JP, Webster SP, Mole DJ (2016) Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback. Cell Death Dis 7:e2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    Article  CAS  PubMed  Google Scholar 

  • Yadava N, Nicholls DG (2007) Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone. J Neurosci 27:7310–7317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM (2012) Interleukin-1beta: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37:939–949

    Article  CAS  PubMed  Google Scholar 

  • Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council (NHMRC), the Australian Research Council (ARC), Macquarie University, The Snow Foundation and the Ramaciotti Perpetual Foundation (Australia). Dr. Gloria Castellano-Gonzalez was a recipient of the Macquarie University international scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David B. Lovejoy or Gilles J. Guillemin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellano-Gonzalez, G., Jacobs, K.R., Don, E. et al. Kynurenine 3-Monooxygenase Activity in Human Primary Neurons and Effect on Cellular Bioenergetics Identifies New Neurotoxic Mechanisms. Neurotox Res 35, 530–541 (2019). https://doi.org/10.1007/s12640-019-9997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-9997-4

Keywords

Navigation