Skip to main content

Advertisement

Log in

Alterations in Synaptic Plasticity and Oxidative Stress Following Long-Term Paracetamol Treatment in Rat Brain

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Several studies have recently revealed that cognitive function can be affected by paracetamol (APAP) treatment. However, the exact impact of this drug treatment on learning and memory has not been clarified. This study aimed to investigate the effect of APAP treatment on the alteration of synapses and oxidative stress in the rat frontal cortex and hippocampus. APAP at a dose of 200 mg/kg bw was fed to adult male Wistar rats through either acute (n = 10), 15-day (n = 10), or 30-day (n = 10) treatment regimens. The synaptic ultrastructure and proteins, synaptophysin (SYP) and postsynaptic density-95 (PSD-95), were monitored. The amount of protein carbonyl oxidation (PCO) and glutathione (GSH) levels were examined. Our results demonstrated that acute treatment with APAP had no effect on synapses and oxidative stress. However, the synapses obtained from rats with 15-day APAP treatment showed a marked shortening of active zones and widening of the synaptic cleft. Decrement of SYP and PSD-95 proteins were demonstrated in these rats as well. With 30-day APAP treatment, the alteration of the synaptic ultrastructure and proteins was more evident. Moreover, the depletion of GSH and the elevation of PCO levels were demonstrated in the rats treated with APAP for 30 days. These results suggest that long-term APAP treatment can induce synaptic degeneration in the hippocampus and frontal cortex. The increase in oxidative stress in these brain areas may be due to the deleterious effect of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdulkhaleq FM, Alhussainy TM, Badr MM, Khalil AAA, Gammoh O, Ghanim BY, Qinna NA (2018) Antioxidative stress effects of vitamins C, E, and B12, and their combination can protect the liver against acetaminophen-induced hepatotoxicity in rats. Drug Des Devel Ther 12:3525–3533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso M, Bekinschtein P, Cammarota M, Vianna MR, Izquierdo I, Medina JH (2005) Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn Mem 12:504–510

    PubMed  PubMed Central  Google Scholar 

  • Bjorkman R (1995) Central antinociceptive effects of non-steroidal anti-inflammatory drugs and paracetamol. Experimental studies in the rat. Acta Anaesthesiol Scand Suppl 103:1–44

    CAS  PubMed  Google Scholar 

  • Blecharz-Klin K, Joniec-Maciejak I, Piechal A, Pyrzanowska J, Wawer A, Widy-Tyszkiewicz E (2014) Paracetamol impairs the profile of amino acids in the rat brain. Environ Toxicol Pharmacol 37:95–102

    CAS  PubMed  Google Scholar 

  • Blecharz-Klin K, Wawer A, Jawna-Zboinska K, Pyrzanowska J, Piechal A, Mirowska-Guzel D, Widy-Tyszkiewicz E (2018) Early paracetamol exposure decreases brain-derived neurotrophic factor (BDNF) in striatum and affects social behaviour and exploration in rats. Pharmacol Biochem Behav 168:25–32

    CAS  PubMed  Google Scholar 

  • Brandlistuen RE, Ystrom E, Nulman I, Koren G, Nordeng H (2013) Prenatal paracetamol exposure and child neurodevelopment: a sibling-controlled cohort study. Int J Epidemiol 42:1702–1713

    Article  Google Scholar 

  • Burgess N, Maguire EA, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    CAS  PubMed  Google Scholar 

  • Chantong C, Yisarakun W, Thongtan T, Maneesri-le Grand S (2013) Increases of pro-inflammatory cytokine expression in hippocampus following chronic paracetamol treatment in rats. Asian Arch Pathol 9:137–146

    Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    CAS  PubMed  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM et al (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    CAS  PubMed  Google Scholar 

  • Euston DR, Gruber AJ, McNaughton BL (2012) The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fakunle PB, Ajibade AJ, Oyewo EB, Alamu OA, Daramola AK (2011) Neurohistological degeneration of the hippocampal formation following chronic simultaneous Administration of Ethanol and Acetaminophen in adult Wistar rats (Rattus norvegicus). J Pharmacol Toxiol 6:701–709

    CAS  Google Scholar 

  • Ge Q, Wang Z, Wu Y, Huo Q, Qian Z, Tian Z, Ren W, Zhang X, Han J (2017) High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Mol Nutr Food Res 61

  • Gonzalez-Barcala FJ, Pertega S, Castro TP, Sampedro M, Lastres JS, Gonzalez MASJ, Bamonde L, Garnelo L, Valdes L, Carreira J-M, Moure J, Silvarrey AL (2013) Exposure to paracetamol and asthma symptoms. Eur J Pub Health 23:706–710

    Google Scholar 

  • Good P (2009) Did acetaminophen provoke the autism epidemic? Altern Med Rev 14:364–372

    PubMed  Google Scholar 

  • Guldner FH, Ingham CA (1980) Increase in postsynaptic density material in optic target neurons of the rat suprachiasmatic nucleus after bilateral enucleation. Neurosci Lett 17:27–31

    CAS  PubMed  Google Scholar 

  • Hansson T, Tindberg N, Ingelman-Sundberg M, Kohler C (1990) Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system. Neurosci 34:451–463

    CAS  Google Scholar 

  • Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78:1223–1232

    CAS  PubMed  Google Scholar 

  • Honer WG, Dickson DW, Gleeson J, Davies P (1992) Regional synaptic pathology in Alzheimer’s disease. Neurobiol Aging 13:375–382

    CAS  PubMed  Google Scholar 

  • Hou Y, Zhou L, Yang QD, Du XP, Li M, Yuan M, Zhou ZW (2012) Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neurosci 200:120–129

    CAS  Google Scholar 

  • Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF (2003) Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 138:1376–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41

    CAS  PubMed  Google Scholar 

  • James LP, McCullough SS, Knight TR, Jaeschke H, Hinson JA (2003) Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res 37:1289–1297

    CAS  PubMed  Google Scholar 

  • Kaneai N, Arai M, Takatsu H, Fukui K, Urano S (2012) Vitamin E inhibits oxidative stress-induced denaturation of nerve terminal proteins involved in neurotransmission. J Alzheimers Dis 28:183–189

    CAS  PubMed  Google Scholar 

  • Keith D, El-Husseini A (2008) Excitation control: balancing PSD-95 function at the synapse. Front Mol Neurosci 1:4

    PubMed  PubMed Central  Google Scholar 

  • Kumpulainen E, Kokki H, Halonen T, Heikkinen M, Savolainen J, Laisalmi M (2007) Paracetamol (acetaminophen) penetrates readily into the cerebrospinal fluid of children after intravenous administration. Pediatrics 119:766–771

    PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–78

  • Martin JH (1991) Neuroanatomy: Text and atlas. Elsevier, New York

    Google Scholar 

  • Moyer AM, Fridley BL, Jenkins GD, Batzler AJ, Pelleymounter LL, Kalari KR, Ji Y, Chai Y, Nordgren KK, Weinshilboum RM (2011) Acetaminophen-NAPQI hepatotoxicity: a cell line model system genome-wide association study. Toxicol Sci 120:33–41

    CAS  PubMed  Google Scholar 

  • Pickering G, Loriot MA, Libert F, Eschalier A, Beaune P, Dubray C (2006) Analgesic effect of acetaminophen in humans: first evidence of a central serotonergic mechanism. Clin Pharmacol Ther 79:371–378

    CAS  PubMed  Google Scholar 

  • Posadas I, Santos P, Blanco A, Munoz-Fernandez M, Cena V (2010) Acetaminophen induces apoptosis in rat cortical neurons. PLoS One 5:e15360

    PubMed  PubMed Central  Google Scholar 

  • Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen CH et al (2008) Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205:2781–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenmund C, Rettig J, Brose N (2003) Molecular mechanisms of active zone function. Curr Opin Neurobiol 13:509–519

    CAS  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    CAS  PubMed  Google Scholar 

  • Sharpe RJ (2008) Acetaminophen: the case for a link to neurodegenerative diseases. Med Hypotheses 71:813–814

    CAS  PubMed  Google Scholar 

  • Skalska J, Frontczak-Baniewicz M, Struzynska L (2015) Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology 46:145–154

    CAS  PubMed  Google Scholar 

  • Smith HS (2009) Potential analgesic mechanisms of acetaminophen. Pain Physician 12:269–280

    PubMed  Google Scholar 

  • Spiwoks-Becker I, Vollrath L, Seeliger MW, Jaissle G, Eshkind LG, Leube RE (2001) Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice. Neurosci 107:127–142

    CAS  Google Scholar 

  • Sudano I, Flammer AJ, Periat D, Enseleit F, Hermann M, Wolfrum M, Hirt A, Kaiser P, Hurlimann D, Neidhart M et al (2010) Acetaminophen increases blood pressure in patients with coronary artery disease. Circulation 122:1789–1796

    CAS  PubMed  Google Scholar 

  • Supornsilpchai W, le Grand SM, Srikiatkhachorn A (2010a) Cortical hyperexcitability and mechanism of medication-overuse headache. Cephalalgia 30:1101–1109

    PubMed  Google Scholar 

  • Supornsilpchai W, le Grand SM, Srikiatkhachorn A (2010b) Involvement of pro-nociceptive 5-HT2A receptor in the pathogenesis of medication-overuse headache. Headache 50:185–197

    PubMed  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    CAS  PubMed  Google Scholar 

  • Tarsa L, Goda Y (2002) Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 99:1012–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uysal N, Tugyan K, Kayatekin BM, Acikgoz O, Bagriyanik HA, Gonenc S, Ozdemir D, Aksu I, Topcu A, Semin I (2005) The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci Lett 383:241–245

    CAS  PubMed  Google Scholar 

  • Wanasuntronwong A, Jansri U, Srikiatkhachorn A (2017) Neural hyperactivity in the amygdala induced by chronic treatment of rats with analgesics may elucidate the mechanisms underlying psychiatric comorbidities associated with medication-overuse headache. BMC Neurosci 18:1

    PubMed  PubMed Central  Google Scholar 

  • Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    CAS  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19:1699–1707

    PubMed  Google Scholar 

  • Xiao Y, Fu H, Han X, Hu X, Gu H, Chen Y, Wei Q, Hu Q (2014) Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats. PLoS One 9:e115556

    PubMed  PubMed Central  Google Scholar 

  • Yan M, Huo Y, Yin S, Hu H (2018) Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol 17:274–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yisarakun W, Chantong C, Supornsilpchai W, Thongtan T, Srikiatkhachorn A, Reuangwechvorachai P, Maneesri-le Grand S (2015) Up-regulation of calcitonin gene-related peptide in trigeminal ganglion following chronic exposure to paracetamol in a CSD migraine animal model. Neuropeptides 51:9–16

    CAS  PubMed  Google Scholar 

  • Yisarakun W, Supornsilpchai W, Chantong C, Srikiatkhachorn A, Maneesri-le Grand S (2014) Chronic paracetamol treatment increases alterations in cerebral vessels in cortical spreading depression model. Microvasc Res 94:36–46

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Research Council of Thailand (NRCT, GB-B_60_074_30_18) and the Thailand Research Fund (PHD/0109/2557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supang Maneesri-le Grand.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalert, L., Ji-au, W., Srikam, S. et al. Alterations in Synaptic Plasticity and Oxidative Stress Following Long-Term Paracetamol Treatment in Rat Brain. Neurotox Res 37, 455–468 (2020). https://doi.org/10.1007/s12640-019-00090-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00090-2

Keywords

Navigation