Skip to main content

Advertisement

Log in

Breakdown of the Paracellular Tight and Adherens Junctions in the Gut and Blood Brain Barrier and Damage to the Vascular Barrier in Patients with Deficit Schizophrenia

  • Clinical Research Report
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Deficit schizophrenia is characterized by leaky intestinal tight and adherens junctions and bacterial translocation. Here we examine whether (deficit) schizophrenia is accompanied by leaky paracellular, transcellular, and vascular barriers in the gut and blood-brain barriers. We measured IgA responses to occludin, claudin-5, E-cadherin, and β-catenin (paracellular pathway, PARA); talin, actin, vinculin, and epithelial intermediate filament (transcellular pathway, TRANS); and plasmalemma vesicle-associated protein (PLVAP, vascular pathway) in 78 schizophrenia patients and 40 controls. IgA responses to claudin-5, E-cadherin, and β-catenin, the sum of the four PARA proteins, and the ratio PARA/TRANS were significantly higher in deficit schizophrenia patients than in nondeficit schizophrenia patients and controls. A large part of the variance in PHEMN (psychosis, hostility, excitation, mannerism, and negative) symptoms, psychomotor retardation, formal thought disorders, verbal fluency, word list memory, word list recall, and executive functions was explained by the PARA/TRANS ratio coupled with plasma IgA responses to Gram-negative bacteria, IgM to malondialdehyde, CCL-11 (eotaxin), IgA levels of the ratio of noxious to more protective tryptophan catabolites (NOX/PRO TRYCATs), and a plasma immune activation index. Moreover, IgA levels to Gram-negative bacteria were significantly associated with IgA to E-cadherin, β-catenin, and PLVAP, while IgA levels to claudin-5 were significantly predicted by IgA to E-cadherin, NOX/PRO TRYCAT ratio, Gram-negative bacteria, and CCL11. The phenomenology of the deficit syndrome is to a large extent explained by the cumulative effects of lowered natural IgM, breakdown of the paracellular and vascular pathways, increased bacterial translocation, peripheral immune-inflammatory responses, and indices of BBB breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Al-Sadi R, Boivin M, Ma T (2009) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci (Landmark Ed) 14:2765–2778

    Article  CAS  Google Scholar 

  • Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9(3):e85345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amara A, Constans J, Chaugier C, Sebban A, Dubourg L, Peuchant E, Pellegrin JL, Leng B, Conri C, Geffard M (1995) Autoantibodies to malondialdehyde-modified epitope in connective tissue diseases and vasculitides. Clin Exp Immunol 101(2):233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasen NC (1989) The scale for the assessment of negative symptoms (SANS): conceptual and theoretical foundations. Brit J Psychiatry Suppl 7:49–58

    Article  Google Scholar 

  • Balda MS, Matter K (1989) Tight junctions. J Cell Sci 111(Pt5):541–547

    Google Scholar 

  • Balda MS, Matter K (2000) Transmembrane proteins of tight junctions. Semin Cell Dev Biol 11(4):281–289

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ, Brennan JM, Vallance KL (1999) Adsorptive endocytosis of HIV-1gp120 by blood-brain barrier is enhanced by lipopolysaccharide. Exp Neurol 156(1):165–171

    Article  CAS  PubMed  Google Scholar 

  • Baranyi A, Amouzadeh-Ghadikolai O, Lewinski DV, Breitenecker RJ, Stojakovic T, März W, Robier C, Rothenhäusler HB, Mangge H, Meinitzer A (2017) Beta-trace protein as a new non-invasive immunological marker for quinolinic acid-induced impaired blood-brain barrier integrity. Sci Rep 7:43642

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer HC, Krizbai IA, Bauer H, Traweger A (2014) “You shall not pass”—tight junctions of the blood brain barrier. Front Neurosci 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Binder CJ (2012) Naturally occurring IgM antibodies to oxidation-specific epitopes. Adv Exp Med Biol 750:2–13

    Article  CAS  PubMed  Google Scholar 

  • Bosma EK, van Noorden CJF, Schlingemann RO, Klaassen I (2018) The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids Barriers CNS 15(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boullerne A, Petry KG, Geffard M (1996) Circulating antibodies directed against conjugated fatty acids in sera of patients with multiple sclerosis. J Neuroimmunol 65(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Boullerne AI, Rodriguez JJ, Touil T, Brochet B, Schmidt S, Abrous ND, Le Moal M, Pua JR, Jensen MA, Mayo W, Arnason BG, Petry KG (2002) Anti-S-nitrosocysteine antibodies are a predictive marker for demyelination in experimental autoimmune encephalomyelitis: implications for multiple sclerosis. J Neurosci 22(1):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouziat R, Jabri B (2015) Immunology. Breaching the gut-vascular barrier. Science 350(6262):742–743

    Article  CAS  PubMed  Google Scholar 

  • Bruewer M, Samarin S, Nusrat A (2006) Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci 1072:242–252

    Article  CAS  PubMed  Google Scholar 

  • Brüser L, Bogdan S (2017) Adherens junctions on the move-membrane trafficking of E-cadherin. Cold Spring Harb Perspect Biol 1:9(3)

    Google Scholar 

  • Burridge K, Connell L (1983) Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil 3(5–6):405–417

    Article  CAS  PubMed  Google Scholar 

  • CANTAB (2018) The most validated cognitive research software. www.cambridgecognition.com/cantab. Accessed 29 April 2019

  • CERAD (1986) CERAD—an overview: the consortium to establish a registry for Alzheimer’s disease. http://cerad.mc.duke.edu/. Accessed 29 April 2019

  • Cummins PM (2012) Occludin: one protein, many forms. Mol Cell Biol 32(2):242–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daverat P, Geffard M, Orgogozo JM (1989) Identification and characterization of anti-conjugated azelaic acid antibodies in multiple sclerosis. J Neuroimmunol 22(2):129–134

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Zaragoza M, Hernández-Ávila R, Viedma-Rodríguez R, Arenas-Aranda D, Ostoa-Saloma P (2015 Sep) Natural and adaptive IgM antibodies in the recognition of tumor-associated antigens of breast cancer (review). Oncol Rep 34(3):1106–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohan FC, Grasberger JC (1973) Relapsed schizophrenics: earlier discharge from the hospital after cereal-free, milk-free diet. Am J Psychiatry 130(6):685–688

    Article  CAS  PubMed  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duleu S, Mangas A, Sevin F, Veyret B, Bessede A, Geffard M (2010) Circulating antibodies to IDO/THO pathway metabolites in Alzheimer’s disease. Int J Alzheimers Dis 2010

  • Edelblum KL, Turner JR (2009) The tight junction in inflammatory disease: communication breakdown. Curr Opin Pharmacol 9(6):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgueta R, Tse D, Deharvengt SJ, Luciano MR, Carriere C, Noelle RJ, Stan RV (2016) Endothelial plasmalemma vesicle-associated protein regulates the homeostasis of splenic immature B cells and B-1 B cells. J Immunol 197(10):3970–3981

    Article  CAS  PubMed  Google Scholar 

  • Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, Turner JR, Naren A, Desiderio DM, Rao R (2009) Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284(3):1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ergün C, Urhan M, Ayer A (2018) A review on the relationship between gluten and schizophrenia: is gluten the cause? Nutr Neurosci 21(7):455–466

    Article  PubMed  Google Scholar 

  • Erickson MA, Morofuji Y, Owen JB, Banks WA (2014) Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells. J Pharmacol Exp Ther 349(3):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faiderbe S, Chagnaud JL, Geffard M (1992) Anti-phosphoinositide auto-antibodies in sera of cancer patients: isotypic and immunochemical characterization. Cancer Lett 66(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Fasano A (2012a) Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N Y Acad Sci 1258:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano A (2012b) Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol 42(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Geisler F, Leube RE (2016) Epithelial intermediate filaments: guardians against microbial infection? Cells 5(3)

  • Ghosh A, Birngruber T, Sattler W, Kroath T, Ratzer M, Sinner F, Pieber TR (2014) Assessment of blood-brain barrier function and the neuroinflammatory response in the rat brain by using cerebral open flow microperfusion (cOFM). PLoS One 9(5):e98143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldmann WH (2002) Mechanical aspects of cell shape regulation and signaling. Cell Biol Int 26(4):313–317

    Article  CAS  PubMed  Google Scholar 

  • Gomez GA, McLachlan RW, Wu SK, Caldwell BJ, Moussa E, Verma S, Bastiani M, Priya R, Parton RG, Gaus K, Sap J, Yap AS (2015) An RPTPα/Src family kinase/Rap1 signaling module recruits myosin IIB to support contractile tension at apical E-cadherin junctions. Mol Biol Cell 26(7):1249–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene C, Kealy J, Humphries MM, Gong Y, Hou J, Hudson N, Cassidy LM, Martiniano R, Shashi V, Hooper SR, Grant GA, Kenna PF, Norris K, Callaghan CK, Islam MD, O'Mara SM, Najda Z, Campbell SG, Pachter JS, Thomas J, Williams NM, Humphries P, Murphy KC, Campbell M (2018) Dose-dependent expression of claudin-5 is a modifying factor in schizophrenia. Mol Psychiatry 23(11):2156–2166

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zhang H, Hou Y, Wei T, Liu J (2016) Plasmalemma vesicle-associated protein: a crucial component of vascular homeostasis. Exp Ther Med 12(3):1639–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32(1):50–55

    Article  CAS  PubMed  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 1778(3):660–669

    Article  CAS  PubMed  Google Scholar 

  • Jamaluddin MS, Wang X, Wang H, Rafael C, Yao Q, Chen C (2009) Eotaxin increases monolayer permeability of human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 29:2146–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchanatawan B, Sirivichayakul S, Ruxrungtham K, Carvalho AF, Geffard M, Ormstad H, Anderson G, Maes M (2018a) Deficit, but not nondeficit, schizophrenia is characterized by mucosa-associated activation of the tryptophan catabolite (TRYCAT) pathway with highly specific increases in IgA responses directed to picolinic, xanthurenic, and quinolinic acid. Mol Neurobiol 55(2):1524–1536

    Article  CAS  PubMed  Google Scholar 

  • Kanchanatawan B, Thika S, Sirivichayakul S, Carvalho AF, Geffard M, Maes M (2018b) In schizophrenia, depression, anxiety, and physiosomatic symptoms are strongly related to psychotic symptoms and excitation, impairments in episodic memory, and increased production of neurotoxic tryptophan catabolites: a multivariate and machine learning study. Neurotox Res 33(3):641–655

    Article  CAS  PubMed  Google Scholar 

  • Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick B, Buchanan RW, McKenney PD, Alphs LD, Carpenter WT Jr (1989) The schedule for the deficit syndrome: an instrument for research in schizophrenia. Psychiatry Res 30:119–123

    Article  CAS  PubMed  Google Scholar 

  • Kita T, Morrison PF, Heyes MP, Markey SP (2002) Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain. J Neurochem 82:258–268

    Article  CAS  PubMed  Google Scholar 

  • Kittirathanapaiboon P, Khamwongpin M (2005) The validity of the Mini International Neuropsychiatric Interview (M.I.N.I.) Thai version. J Ment Health Thai 13(3):125–135

    Google Scholar 

  • Klapholz B, Brown NH (2017) Talin—the master of integrin adhesions. J Cell Sci 130(15):2435–2446

    Article  CAS  PubMed  Google Scholar 

  • Kurolap A, Eshach-Adiv O, Gonzaga-Jauregui C, Dolnikov K, Mory A, Paperna T, Hershkovitz T, Overton JD, Kaplan M, Glaser F, Zohar Y, Shuldiner AR, Berger G, Baris HN (2018) Establishing the role of PLVAP in protein-losing enteropathy: a homozygous missense variant leads to an attenuated phenotype. J Med Genet 55(11):779–784

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara H, Kokai Y, Kojima T, Takakuwa R, Mori M, Sawada N (2001) Occludin regulates actin cytoskeleton in endothelial cells. Cell Struct Funct 26(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO (2012) Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma SC, Li Q, Peng JY, Zhouwen JL, Diao JF, Niu JX, Wang X, Guan XD, Jia W, Jiang WG (2017) Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis. CNS Neurosci Ther 23(12):947–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF (2018a) In schizophrenia, increased plasma IgM/IgA responses to gut commensal bacteria are associated with negative symptoms, neurocognitive impairments, and the deficit phenotype. Neurotox Res 35:684–698. https://doi.org/10.1007/s12640-018-9987-y

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Kanchanatawan B, Sirivichayakul S, Carvalho AF (2018b) In schizophrenia, deficits in natural IgM isotype antibodies including those directed to malondialdehyde and azelaic acid strongly predict negative symptoms, neurocognitive impairments, and the deficit syndrome. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1437-6

  • Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Upregulation of the intestinal paracellular pathway with breakdown of tight and adherens junctions in deficit schizophrenia. Preprints 2019010141. https://doi.org/10.20944/preprints201901.0141.v1

  • Minami T, Okazaki J, Kawabata A, Kawaki H, Okazaki Y, Tohno Y (1998) Roles of nitric oxide and prostaglandins in the increased permeability of the blood-brain barrier caused by lipopolysaccharide. Environ Toxicol Pharmacol 5(1):35–41

    Article  CAS  PubMed  Google Scholar 

  • Miyamae Y, Nakamura Y, Kashiwagi Y, Tanaka T, Kudo T, Takeda M (1998) Altered adhesion efficiency and fibronectin content in fibroblasts from schizophrenic patients. Psychiatry Clin Neurosci 52(3):345–352

    Article  CAS  PubMed  Google Scholar 

  • Mladinov M, Sedmak G, Fuller HR, Babić Leko M, Mayer D, Kirincich J, Štajduhar A, Borovečki F, Hof PR, Šimić G (2016) Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia. Transl Neurosci 7(1):139–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TT, Kosciolek T, Maldonado Y, Daly RE, Martin AS, McDonald D, Knight R, Jeste DV (2018) Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res S0920-9964(18):30572–20573

    Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Anderson G, Carvalho AF, Duleu S, Geffard M, Maes M (2017) IgA/IgM responses to tryptophan and tryptophan catabolites (TRYCATs) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome. Mol Neurobiol 54(4):3038–3049

    Article  CAS  PubMed  Google Scholar 

  • Roomruangwong C, Kanchanatawan B, Carvalho AF, Sirivichayakul S, Duleu S, Geffard M, Maes M (2018a) Body image dissatisfaction in pregnant and non-pregnant females is strongly predicted by immune activation and mucosa-derived activation of the tryptophan catabolite (TRYCAT) pathway. World J Biol Psychiatry 19:200–209

    Article  PubMed  Google Scholar 

  • Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M (2018b) The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Preprint, September 2018. https://doi.org/10.20944/preprints201809.0289.v1

  • Rowland LM, Demyanovich HK, Wijtenburg SA, Eaton WW, Rodriguez K, Gaston F, Cihakova D, Talor MV, Liu F, McMahon RR, Hong LE, Kelly DL (2017) Antigliadin antibodies (AGA IgG) are related to neurochemistry in schizophrenia. Front Psychiatry 8:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Rüffer C, Gerke V (2004) The C-terminal cytoplasmic tail of claudins 1 and 5 but not its PDZ-binding motif is required for apical localization at epithelial and endothelial tight junctions. Eur J Cell Biol 83(4):135–144

    Article  PubMed  Google Scholar 

  • Salas PJ, Forteza R, Mashukova A (2016) Multiple roles for keratin intermediate filaments in the regulation of epithelial barrier function and apico-basal polarity. Tissue Barriers 4(3):e1178368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shue EH, Carson-Walter EB, Liu Y, Winans BN, Ali ZS, Chen J, Walter KA (2008) Plasmalemmal vesicle associated protein-1 (PV-1) is a marker of blood-brain barrier disruption in rodent models. BMC Neurosci 9:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M (2018) A new schizophrenia model: immune activation is associated with induction of different neurotoxic products which together determine memory impairments and schizophrenia symptom dimensions. CNS Neurol Disord Drug Targets. https://doi.org/10.2174/1871527317666181119115532

  • Sirivichayakul S, Kanchanatawan B, Thika S, Carvalho AF, Maes M (2019) Eotaxin, an endogenous cognitive deteriorating chemokine (ECDC), is a major contributor to cognitive decline in normal people and to executive, memory, and sustained attention deficits, formal thought disorders, and psychopathology in schizophrenia patients. Neurotox Res 35(1):122–138

    Article  CAS  PubMed  Google Scholar 

  • Spadoni I, Pietrelli A, Pesole G, Rescigno M (2016) Gene expression profile of endothelial cells during perturbation of the gut vascular barrier. Gut Microbes 7(6):540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4(1):e1154641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan RV, Tkachenko E, Niesman IR (2004) PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol Biol Cell 15(8):3615–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolp HB, Dziegielewska KM (2009) Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35(2):132–146

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci U S A 106(1):61–66

    Article  PubMed  Google Scholar 

  • Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DC, Zheng G (2011) E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011:567305

    PubMed  PubMed Central  Google Scholar 

  • Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209(4):493–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utech M, Mennigen R, Bruewer M (2010) Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol 2010:484987

    Article  CAS  PubMed  Google Scholar 

  • Van den Bossche J, Malissen B, Mantovani A, De Baetselier P, Van Ginderachter JA (2012) Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 119(7):1623–1633

    Article  CAS  PubMed  Google Scholar 

  • van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65(23):3756–3788

    Article  CAS  PubMed  Google Scholar 

  • Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12

    Article  CAS  PubMed  Google Scholar 

  • Vojdani A, Vojdani E (2019) Food-associated autoimmunities: when food turns your immune system against you. in press

  • Webb AA, Muir GD (2000) The blood-brain barrier and its role in inflammation. J Vet Intern Med 14(4):399–411

    Article  CAS  PubMed  Google Scholar 

  • Weismann D, Binder CJ (2012) The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta 1818(10):2465–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xaio H, Banks WA, Niehoff ML, Morley JE (2001) Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Res 896(1–2):36–42

    Article  CAS  PubMed  Google Scholar 

  • Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE (2005) Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288(6):C1231–C1241

    Article  CAS  PubMed  Google Scholar 

  • Zachrisson O, Regland B, Jahreskog M, Kron M, Gottfries CG (2002) A rating scale for fibromyalgia and chronic fatigue syndrome (the FibroFatigue scale). J Psychosom Res 52(6):501–509

    Article  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Asahi Glass Foundation, Chulalongkorn University Centenary Academic Development Project and Ratchadapiseksompotch Funds, Faculty of Medicine, Chulalongkorn University, grant numbers RA60/042 (to BK) and RA61/050 (to MM).

Author information

Authors and Affiliations

Authors

Contributions

All the contributing authors have participated in the manuscript. MM and BK designed the study. BK recruited patients and completed diagnostic interviews and rating scale measurements. MM carried out the statistical analyses. All authors (BK, MM, SS, and AV) contributed to the interpretation of the data and writing of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, M., Sirivichayakul, S., Kanchanatawan, B. et al. Breakdown of the Paracellular Tight and Adherens Junctions in the Gut and Blood Brain Barrier and Damage to the Vascular Barrier in Patients with Deficit Schizophrenia. Neurotox Res 36, 306–322 (2019). https://doi.org/10.1007/s12640-019-00054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00054-6

Navigation