Advertisement

Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on Monoamines, BDNF, TrkB, and Cognitive Function in Sprague–Dawley Rats

  • Rebecca A. Bailey
  • Arnold Gutierrez
  • Tara L. Kyser
  • Ann M. Hemmerle
  • Jillian R. Hufgard
  • Kim B. Seroogy
  • Charles V. Vorhees
  • Michael T. WilliamsEmail author
Original Article
  • 37 Downloads

Abstract

Manganese (Mn) is an essential nutrient especially during development, but Mn overexposure (MnOE) produces long-term cognitive deficits. Evidence of long-term changes in dopamine in the neostriatum was found in rats from developmental MnOE previously. To examine the relationship between MnOE and dopamine, we tested whether the effects of developmental MnOE would be exaggerated by dopamine reductions induced by 6-hydroxydopamine (6-OHDA) neostriatal infusion when the rats were adults. The experiment consisted of four groups of females and males: Vehicle/Sham, MnOE/Sham, Vehicle/6-OHDA, and MnOE/6-OHDA. Both MnOE/Sham and Vehicle/6-OHDA groups displayed egocentric and allocentric memory deficits, whereas MnOE+6-OHDA had additive effects on spatial memory in the Morris water maze and egocentric learning in the Cincinnati water maze. 6-OHDA reduced dopamine in the neostriatum and nucleus accumbens, reduced norepinephrine in the hippocampus, reduced TH+ cells and TrkB and TH expression in the substantia nigra pars compacta (SNpc), but increased TrkB in the neostriatum. MnOE alone had no effect on monoamines or TrkB in the neostriatum or hippocampus but reduced BDNF in the hippocampus. A number of sex differences were noted; however, only a few significant interactions were found for MnOE and/or 6-OHDA exposure. These data further implicate dopamine and BDNF in the cognitive deficits arising from developmental MnOE.

Keywords

Morris water maze Cincinnati water maze 6-Hydroxydopamine Egocentric learning Allocentric learning and memory Manganese Development Neurotrophins 

Notes

Funding Information

We gratefully acknowledge the following sources of support: the Selma Schottenstein Harris Lab for Research in Parkinson’s, the University of Cincinnati Gardner Family Center for Parkinson’s Disease and Movement Disorders, and the Parkinson’s Disease Support Network-Ohio, Kentucky and Indiana. Additionally, this work was supported by a grant from the University of Cincinnati Gardner Neuroscience Institute-Neurobiology Research Center Pilot Research Program and NIH T32 007051 (RAB).

References

  1. Aguiar LMV, Macêdo DS, Vasconcelos SMM, Oliveira AA, de Sousa FCF, Viana GSB (2008) CSC, an adenosine A2A receptor antagonist and MAO B inhibitor, reverses behavior, monoamine neurotransmission, and amino acid alterations in the 6-OHDA-lesioned rats. Brain Res 1191:192–199PubMedCrossRefGoogle Scholar
  2. Amos-Kroohs RM, Bloor CP, Qureshi MA, Vorhees CV, Williams MT (2015) Effects of developmental exposure to manganese and/or low iron diet: changes to metal transporters, sucrose preference, elevated zero-maze, open-field, and locomotion in response to fenfluramine, amphetamine, and MK-801. Toxicol Rep 2:1046–1056PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amos-Kroohs RM, Davenport LL, Gutierrez A, Hufgard JR, Vorhees CV, Williams MT (2016) Developmental manganese exposure in combination with developmental stress and iron deficiency: effects on behavior and monoamines. Neurotoxicol Teratol 56:55–67PubMedCrossRefGoogle Scholar
  4. Amos-Kroohs RM, Davenport LL, Atanasova N, Abdulla ZI, Skelton MR, Vorhees CV, Williams MT (2017) Developmental manganese neurotoxicity in rats: cognitive deficits in allocentric and egocentric learning and memory. Neurotoxicol Teratol 59:16–26PubMedCrossRefGoogle Scholar
  5. Benedetto A, Au C, Aschner M (2009) Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev 109:4862–4884PubMedCrossRefGoogle Scholar
  6. Bonito-Oliva A, Pignatelli M, Spigolon G, Yoshitake T, Seiler S, Longo F, Piccinin S, Kehr J, Mercuri NB, Nisticò R, Fisone G (2014) Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biol Psychiatry 75:701–710PubMedCrossRefGoogle Scholar
  7. Bouchatta O, Manouze H, Bouali-benazzouz R, Kerekes N, Ba-M’hamed S, Fossat P, Landry M, Bennis M (2018) Neonatal 6-OHDA lesion model in mouse induces attention-deficit/hyperactivity disorder (ADHD)-like behaviour. Sci Rep 8:15349PubMedPubMedCentralCrossRefGoogle Scholar
  8. Braun AA, Graham DL, Schaefer TL, Vorhees CV, Williams MT (2012) Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiol Learn Mem 97:402–408PubMedPubMedCentralCrossRefGoogle Scholar
  9. Braun AA, Amos-Kroohs RM, Gutierrez A, Lundgren KH, Seroogy KB, Skelton MR, Vorhees CV, Williams MT (2015) Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati water maze performance while sparing allocentric Morris water maze learning. Neurobiol Learn Mem 118:55–63PubMedCrossRefGoogle Scholar
  10. Chen H, Jing FC, Li CL, Tu PF, Zheng QS, Wang ZH (2007) Echinacoside prevents the striatal extracellular levels of monoamine neurotransmitters from diminution in 6-hydroxydopamine lesion rats. J Ethnopharmacol 114:285–289PubMedCrossRefGoogle Scholar
  11. Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MMB, Bowman AB, Aschner M (2015) Manganese homeostasis in the nervous system. J Neurochem 134:601–610PubMedPubMedCentralCrossRefGoogle Scholar
  12. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17CrossRefGoogle Scholar
  13. Cordova FM, Aguiar AS, Peres TV, Lopes MW, Goncalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RDS, Erikson KM, Aschner M, Leal RB (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7:1–14Google Scholar
  14. Cordova FM, Aguiar ASJ, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C, Prediger RDS, Farina M, Erikson KM, Aschner M, Leal RB (2013) Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 87:1231–1244PubMedCrossRefGoogle Scholar
  15. Couper J (1837) On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmacol 1:41–42Google Scholar
  16. Cravens RW (1974) Effects of maternal undernutrition on offspring behavior: incentive value of a food reward and ability to escape from water. Dev Psychobiol 7:61–69PubMedCrossRefGoogle Scholar
  17. de Water E, Proal E, Wang V, Medina SM, Schnaas L, Téllez-Rojo MM, Wright RO, Tang CY, Horton MK (2018) Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. Neurotoxicology 64:85–93PubMedCrossRefGoogle Scholar
  18. Dorner K, Dziadzka S, Hohn A, Sievers E, Oldigs HD, Schulz-Lell G, Schaub J (1989) Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow’s milk formulas. Br J Nutr 61:559–572PubMedCrossRefGoogle Scholar
  19. Egyed M, Wood GC (1996) Risk assessment for combustion products of the gasoline additive MMT in Canada. Sci Total Environ 189–190:11–20CrossRefGoogle Scholar
  20. Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43:475–480PubMedCrossRefGoogle Scholar
  21. Erikson KM, Dorman DC, Lash LH, Dobson AW, Aschner M (2004) Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner. Biol Trace Elem Res 100:49–62PubMedCrossRefGoogle Scholar
  22. Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M (2006) Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111:199–215PubMedCrossRefGoogle Scholar
  23. Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377PubMedCrossRefGoogle Scholar
  24. Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104:420–432PubMedCrossRefGoogle Scholar
  25. Fu H, Chen W, Yu H, Wei Z, Yu X (2016) The effects of preweaning manganese exposure on spatial learning ability and p-CaMKIIa level in the hippocampus. Neurotoxicology 52:98–103PubMedCrossRefGoogle Scholar
  26. Golub MS, Hogrefe CE, Germann SL, Tran TT, Beard JL, Crinella FM, Lonnerdal B (2005) Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol Teratol 27:615–627PubMedCrossRefGoogle Scholar
  27. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48:650–658PubMedCrossRefGoogle Scholar
  28. Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hafeman D, Factor-Litvak P, Cheng Z, van Geen A, Ahsan H (2007) Association between manganese exposure through drinking water and infant mortality in Bangladesh. Environ Health Perspect 115:1107–1112PubMedPubMedCentralCrossRefGoogle Scholar
  30. Haynes EN, Sucharew H, Hilbert TJ, Kuhnell P, Spencer A, Newman NC, Burns R, Wright R, Parsons PJ, Dietrich KN (2018) Impact of air manganese on child neurodevelopment in East Liverpool, Ohio. Neurotoxicology 64:94–102PubMedCrossRefGoogle Scholar
  31. He P, Liu DH, Zhang GQ (1994) Effects of high-level manganese sewage irrigation on children’s neurobehavior. Zhonghua Yu Fang Yi Xue Za Zhi 28:216–218PubMedGoogle Scholar
  32. He Q, Du T, Yu X, Xie A, Song N, Kang Q, Yu J, Tan L, Xie J, Jiang H (2011) DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett 501:128–131PubMedCrossRefGoogle Scholar
  33. Hemmerle AM, Dickerson JW, Herring NR, Schaefer TL, Vorhees CV, Williams MT, Seroogy KB (2012) (+/−)3,4-Methylenedioxymethamphetamine (“ecstasy”) treatment modulates expression of neurotrophins and their receptors in multiple regions of the adult rat brain. J Comp Neurol 520:2459–2474PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hemmerle AM, Dickerson JW, Herman JP, Seroogy KB (2014) Stress exacerbates experimental Parkinson’s disease. Mol Psychiatry 19:638–640PubMedCrossRefGoogle Scholar
  35. Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB (2015) Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res 168:411–420PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hirata Y, Furuta K, Suzuki M, Oh-Hashi K, Ueno Y, Kiuchi K (2012) Neuroprotective cyclopentenone prostaglandins up-regulate neurotrophic factors in C6 glioma cells. Brain Res 1482:91–100PubMedCrossRefGoogle Scholar
  37. Hu J, Ferchmin PA, Hemmerle AM, Seroogy KB, Eterovic VA, Hao J (2017) 4R-Cembranoid improves outcomes after 6-hydroxydopamine challenge in both in vitro and in vivo models of Parkinson’s disease. Front Neurosci 11:272PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kim Y, Kim JM, Kim JW, Yoo CI, Lee CR, Lee JH, Kim HK, Yang SO, Chung HK, Lee DS, Jeon BS (2002) Dopamine transporter density is decreased in parkinsonian patients with a history of manganese exposure: what does it mean? Mov Disord 17:568–575PubMedCrossRefGoogle Scholar
  39. Kornblith ES, Casey SL, Lobdell DT, Colledge MA, Bowler RM (2018) Environmental exposure to manganese in air: tremor, motor and cognitive symptom profiles. Neurotoxicology 64:152–158PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kwon OB, Lee JH, Kim HJ, Lee S, Lee S, Jeong MJ, Kim SJ, Jo HJ, Ko B, Chang S, Park SK, Choi YB, Bailey CH, Kandel ER, Kim JH (2015) Dopamine regulation of amygdala inhibitory circuits for expression of learned fear. Neuron 88:378–389PubMedCrossRefGoogle Scholar
  41. Lazrishvili I, Bikashvili T, Shukakidze A, Samchkuashvili K, Shavlakadze O (2011) Effect of short-term manganese chloride intoxicatuion on anxiety and fear of young rats. Georgian Med News 11:102–106PubMedGoogle Scholar
  42. Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, Parrinello G, Garattini S, Resola S, Alessio L (2007) High prevalence of parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med 50:788–800PubMedCrossRefGoogle Scholar
  43. Mena I, Horiuchi K, Burke K, Cotzias GC (1969) Chronic manganese poisoning: individual susceptibility and absorption of iron. Neurology 19:1000–1006PubMedCrossRefGoogle Scholar
  44. Menezes-Filho JA, Bouchard M, Sarcinelli PD, Moreira JC (2009) Manganese exposure and the neuropsychological effect on children and adolescents: a review. Rev Panam Salud Publica 26:541–548PubMedCrossRefGoogle Scholar
  45. Molina RM, Phattanarudee S, Kim J, Thompson K, Wessling-Resnick M, Maher TJ, Brain JD (2011) Ingestion of Mn and Pb by rats during and after pregnancy alters iron metabolism and behavior in offspring. Neurotoxicology 32:413–422PubMedPubMedCentralCrossRefGoogle Scholar
  46. Moreno JA, Streifel KM, Sullivan KA, Legare ME, Tjalkens RB (2009) Developmental exposure to manganese increases adult susceptibility to inflammatory activation of glia and neuronal protein nitration. Toxicol Sci 112:405–415PubMedPubMedCentralCrossRefGoogle Scholar
  47. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683PubMedCrossRefGoogle Scholar
  48. Numan S, Seroogy KB (1999) Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J Comp Neurol 403:295–308PubMedCrossRefGoogle Scholar
  49. Numan S, Gall CM, Seroogy KB (2005) Developmental expression of neurotrophins and their receptors in postnatal rat ventral midbrain. J Mol Neurosci 27:245–260PubMedCrossRefGoogle Scholar
  50. Paquette C, Franzén E, Jones GM, Horak FB (2011) Walking in circles: navigation deficits from Parkinson’s disease but not from cerebellar ataxia. Neuroscience 190:177–183PubMedPubMedCentralCrossRefGoogle Scholar
  51. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, LondonGoogle Scholar
  52. Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17:57PubMedPubMedCentralCrossRefGoogle Scholar
  53. Perl D, Olanow C (2007) The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol 66:675–682PubMedCrossRefGoogle Scholar
  54. Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V (2015) Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem 120:52–60PubMedCrossRefGoogle Scholar
  55. Rabelo PCR, Almeida TF, Guimarães JB, Barcellos LAM, Cordeiro LMS, Moraes MM, Coimbra CC, Szawka RE, Soares DD (2015) Intrinsic exercise capacity is related to differential monoaminergic activity in the rat forebrain. Brain Res Bull 112:7–13PubMedCrossRefGoogle Scholar
  56. Ressler T, Wong J, Roos J (1999) Manganese speciation in exhaust particulates of automobiles using MMT-containing gasoline. J Synchrotron Radiat 6:656–658PubMedCrossRefGoogle Scholar
  57. Rodier J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12:21–35PubMedPubMedCentralGoogle Scholar
  58. Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103:145–156PubMedGoogle Scholar
  59. Roels H, Meiers G, Delos M, Ortega I, Lauwerys R, Buchet JP, Lison D (1997) Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol 71:223–230PubMedCrossRefGoogle Scholar
  60. Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128:484–500PubMedGoogle Scholar
  61. Sasi M, Vignoli B, Canossa M, Blum R (2017) Neurobiology of local and intercellular BDNF signaling. Pflugers Arch - Eur J Physiol 3:1–18Google Scholar
  62. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224PubMedCrossRefGoogle Scholar
  63. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16PubMedCrossRefGoogle Scholar
  64. Seroogy KB, Herman JP (1997) In situ hybridization approaches to the study of the nervous system. In: Turner AJ, Bachelard HS (eds) Neurochemistry: a practical approach. Oxford University Press, Oxford, pp 121–150Google Scholar
  65. Seroogy KB, Lundgren KH, Tran TMD, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342:321–334PubMedCrossRefGoogle Scholar
  66. Smith EA, Newland P, Bestwick KG, Ahmed N (2013) Increased whole blood manganese concentrations observed in children with iron deficiency anaemia. J Trace Elem Med Biol 27:65–69PubMedCrossRefGoogle Scholar
  67. Surmeier DJ, Sulzer D (2013) The pathology roadmap in Parkinson disease. Prion 7:85–91PubMedPubMedCentralCrossRefGoogle Scholar
  68. Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G (2003) Manganese, monoamine metabolite levels at birth, and child psychomotor development. Neurotoxicology 24:667–674PubMedCrossRefGoogle Scholar
  69. Tran TT, Chowanadisai W, Crinella FM, Chicz-DeMet A, Lönnerdal B (2002) Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 23:635–643PubMedCrossRefGoogle Scholar
  70. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858PubMedPubMedCentralCrossRefGoogle Scholar
  71. Vorhees CV, Williams MT (2016) Cincinnati water maze: a review of the development, methods, and evidence as a test of egocentric learning and memory. Neurotoxicol Teratol 57:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  72. Vorhees CV, Herring NR, Schaefer TL, Grace CE, Skelton MR, Johnson HL, Williams MT (2008) Effects of neonatal (+)-methamphetamine on path integration and spatial learning in rats: effects of dose and rearing conditions. Int J Dev Neurosci 26:599–610PubMedPubMedCentralCrossRefGoogle Scholar
  73. Vorhees CV, He E, Skelton MR, Graham DL, Schaefer TL, Grace CE, Braun AA, Amos-Kroohs R, Williams MT (2011) Comparison of (+)-methamphetamine, ±-methylenedioxymethamphetamine, (+)-amphetamine and ±-fenfluramine in rats on egocentric learning in the Cincinnati water maze. Synapse 65:368–378PubMedCrossRefGoogle Scholar
  74. Vorhees CV, Graham DL, Amos-Kroohs RM, Braun AA, Grace CE, Schaefer TL, Skelton MR, Erikson KM, Aschner M, Williams MT (2014) Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicol Rep 1:1046–1061PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wang J, Chen X, Zhang N, Ma Q (2013) Effects of exercise on stress-induced changes of norepinephrine and serotonin in rat hippocampus. Chin J Phys 56:245–252CrossRefGoogle Scholar
  76. West MJ (1993) Design-based stereological methods for counting neurons. Neurobiol Aging 14:275–285PubMedCrossRefGoogle Scholar
  77. Williams MT, Morford LRL, Wood SL, Rock SL, McCrea AE, Fukumura M, Wallace TL, Broening HW, Moran MS, Vorhees CV (2003) Developmental 3,4-methylenedioxymethamphetamine (MDMA) impairs sequential and spatial but not cued learning independent of growth, litter effects or injection stress. Brain Res 968:89–101PubMedCrossRefGoogle Scholar
  78. Williams MT, Herring NR, Schaefer TL, Skelton MR, Campbell NG, Lipton JW, McCrea AE, Vorhees CV (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacology 32:1404–1420PubMedCrossRefGoogle Scholar
  79. Witholt R, Gwiazda RH, Smith DR (2000) The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol Teratol 22:851–861PubMedCrossRefGoogle Scholar
  80. Yamada M, Ohno S, Okayasu I, Okeda R, Hatakeyama S, Watanabe H, Ushio K, Tsukagoshi H (1986) Chronic manganese poisoning: a neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol 70:273–278PubMedCrossRefGoogle Scholar
  81. Yoon M, Schroeter JD, Nong A, Taylor MD, Dorman DC, Andersen ME, Clewell HJ (2011) Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development. Toxicol Sci 122:297–316PubMedCrossRefGoogle Scholar
  82. Yu X, Chen L, Wang C, Yang X, Gao Y, Tian Y (2016) The role of cord blood BDNF in infant cognitive impairment induced by low-level prenatal manganese exposure: LW birth cohort, China. Chemosphere 163:446–451PubMedCrossRefGoogle Scholar
  83. Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, Kowalczyk TH, Padegimas L, Cooper MJ (2009) Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther 17:641–650PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhang G, Liu D, He P (1995) Effects of manganese on learning abilities in school children. Zhonghua Yu Fang Yi Xue Za Zhi 29:156–158PubMedGoogle Scholar
  85. Zou Y, Qing L, Zeng X, Shen Y, Zhong Y, Liu J, Li Q, Chen K, Lv Y, Huang D, Liang G, Zhang W, Chen L, Yang Y, Yang X (2014) Cognitive function and plasma BDNF levels among manganese-exposed smelters. Occup Environ Med 71:189–194PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rebecca A. Bailey
    • 1
    • 2
    • 3
  • Arnold Gutierrez
    • 1
    • 2
    • 3
  • Tara L. Kyser
    • 3
    • 4
  • Ann M. Hemmerle
    • 4
  • Jillian R. Hufgard
    • 1
    • 2
  • Kim B. Seroogy
    • 3
    • 4
  • Charles V. Vorhees
    • 1
    • 2
    • 3
  • Michael T. Williams
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Division of NeurologyCincinnati Children’s Research FoundationCincinnatiUSA
  3. 3.Neuroscience Graduate ProgramUniversity of Cincinnati College of MedicineCincinnatiUSA
  4. 4.Department of NeurologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations