Skip to main content

siRNA Blocking of Mammalian Target of Rapamycin (mTOR) Attenuates Pathology in Annonacin-Induced Tauopathy in Mice

Abstract

Tauopathy is a pathological hallmark of many neurodegenerative diseases. It is characterized by abnormal aggregates of pathological phosphotau and somatodendritic redistribution. One suggested strategy for treating tauopathy is to stimulate autophagy, hence, getting rid of these pathological protein aggregates. One key controller of autophagy is mTOR. Since stimulation of mTOR leads to inhibition of autophagy, inhibitors of mTOR will cause stimulation of autophagy process. In this report, tauopathy was induced in mice using annonacin. Blocking of mTOR was achieved through stereotaxic injection of siRNA against mTOR. The behavioral and immunohistochemical evaluation revealed the development of tauopathy model as proven by deterioration of behavioral performance in open field test and significant tau aggregates in annonacin-treated mice. Blocking of mTOR revealed significant clearance of tau aggregates in the injected side; however, tau expression was not affected by mTOR blockage.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  • Betz C, Hall MN (2013) Where is mTOR and what is it doing there? J Cell Biol 203(4):563–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccamo A, DePinto V, Messina A, Branca C, Oddo S (2014) Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 34:7988–7998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk E, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4:851–865

    Article  CAS  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Höllerhage M, Deck R, De Andrade A, Respondek G, Xu H, Rösler T, Salama M, Carlsson T, Yamada ES, Gad El Hak S, Goedert M, Oertel W, Höglinger GU (2015) Piericidin A aggravates tau pathology in P301S transgenic mice. PLoS One 9(12):e113557

    Article  CAS  Google Scholar 

  • Jiang T, JT Y, Zhu XC, Zhang QQ, Cao L, Wang HF (2014) Temsirolimus attenuates tauopathy in vitro and in vivo by targeting hyperphosphorylation and autophagic clearance. Neuropharmacology 85:121–130

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ (2005) Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272:4211–4220

    Article  CAS  PubMed  Google Scholar 

  • Ludolph AC, Kassubek J, Landwehrmeyer BG, Mandelkow E, Mandelkow EM, Burn DJ, Caparros-Lefebvre D, Frey KA, de Yebenes JG, Gasser T, Heutink P, Höglinger G, Jamrozik Z, Jellinger KA, Kazantsev A, Kretzschmar H, Lang AE, Litvan I, Lucas JJ, MG PL, Melquist S, Oertel W, Otto M, Paviour D, Reum T, Saint-Raymond A, Steele JC, Tolnay M, Tumani H, van Swieten JC, Vanier MT, Vonsattel JP, Wagner S, Wszolek ZK, Reisensburg Working Group for Tauopathies With Parkinsonism (2009) Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options. Eur J Neurol 16(3):297–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicks J, Lee S, Harris A, Falk DJ, Todd AG, Arredondo K, DunnWAJr NL (2014) Rapamycin improves peripheral nerve myelination while it fails to benefit neuromuscular performance in neuropathic mice. Neurobiol Dis 70:224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M, Tolnay M, Winkler DT (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8(5):e62459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottscholl R, Haegele M, Jainsch B, Xu H, Respondek G, Hollerhage M, Rosler TW, Bony E, Le Ven J, Guerineau V, Schmitz-Afonso I, Champy P, Oertel WH, Yamada ES, Hoglinger GU (2016) Chronic consumption of Annonamuricata juice triggers and aggravates cerebral tau phosphorylation in wild-type and MAPT transgenic mice. J Neurochem 139(4):624–639

    Article  CAS  PubMed  Google Scholar 

  • Salama M, El-Hussiny M, Magdy A, Omran A, Alsayed A, Ashry A, Mohamed W (2017) Dual mTORC1/mTORC2 blocker as a possible therapy for tauopathy in cellular model. Metab Brain Dis 33(2):583–587

    Article  CAS  PubMed  Google Scholar 

  • SantaCruz K (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siman R, Cocca R, Dong Y (2015) The mTOR inhibitor rapamycin mitigates perforant pathway neurodegeneration and synapse loss in a mouse model of early-stage Alzheimer-type tauopathy. PLoS One 10(11):e0142340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa-Victor P, García-Prat L, Muñoz-Cánoves P (2015) Dual mTORC1/ C2 inhibitors: gerosuppressors with potential anti-aging effect. Oncotarget 6(27):23052–23054

    Article  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Goedert M (2013) Tau pathology, and neurodegeneration. Lancet Neurol 12:609–622

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Bereczki E, Zhang H, Wang S, Li C, Ji X, Branca RM, Lehtiö J, Guan Z, Filipcik P, Xu S, Winblad B, Pei JJ (2013) Mammalian target of rapamycin (mTor) mediates tau protein dyshomeostasis: implication for Alzheimer disease. J Biol Chem 288(22):15556–15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Rosler TW, Carlsson T, de Andrade A, Fiala O, Hollerhage M, Oertel WH, Goedert M, Aigner A, Hoglinger GU (2014) Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther 14(5):343–351

    Article  CAS  PubMed  Google Scholar 

  • Yamada ES, Respondek G, Müssner S, de Andrade A, Höllerhage M, Depienne C, Rastetter A, Tarze A, Friguet B, Salama M, Champy P, Oertel WH, Höglinger GU (2014) Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phophorylation of tau in the brain of FTDP-17 transgenic mice. Exp Neurol 253C:113–125

    Article  CAS  Google Scholar 

  • Zhang X, Li L, Chen S, Yang D, WangY ZX, Wang Z, Le W (2011) Rapamycin treatment augments motor neuron degeneration in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Autophagy 7(4):412–425

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present work was supported by a grant from the Science and Technology Development Fund (STDF), Egypt (BARG: 13892; MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salama.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salama, M., El-Desouky, S., Alsayed, A. et al. siRNA Blocking of Mammalian Target of Rapamycin (mTOR) Attenuates Pathology in Annonacin-Induced Tauopathy in Mice. Neurotox Res 35, 987–992 (2019). https://doi.org/10.1007/s12640-018-9974-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9974-3

Keywords

  • Tauopathy
  • mTOR
  • siRNA
  • Neurodegeneration
  • Autophagy