Skip to main content
Log in

Manganese-Mediated Decrease in Levels of c-RET and Tyrosine Hydroxylase Expression In Vitro

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Previous studies showed that overexposure to manganese causes parkinsonism, a disorder of dopaminergic neurons. Previous studies also showed that activity of c-RET kinase controls dopamine production through regulation of tyrosine hydroxylase (TH) expression, suggesting the involvement of c-RET in the development of parkinsonism. To our knowledge, however, there is no report showing a correlation between manganese-mediated parkinsonism and c-RET. In this study, we examined the effect of manganese on the expression and/or activation levels of c-RET and TH in human TH-expressing cells (TGW cells). We first found that treatment with 30 and 100 μM manganese resulted in reduction of c-RET transcript level and degradation of c-RET protein through promotion of ubiquitination. We then examined the biological significance of manganese-mediated decrease of c-RET protein expression. Decreased TH expression with decreased c-RET kinase activity was observed in c-RET protein-depleted TGW cells by treatment with manganese (30 μM) as well as by c-RET siRNA transfection. Since TH protein has been shown to be involved in the dopamine-producing pathway in previous studies, our results indicate the possibility that manganese-mediated reduction of TH expression and phosphorylation via decreased expression of c-RET protein in neural cells is involved in parkinsonism induced by manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antonini JM, Zeidler-Erdely PC, Young SH, Roberts JR, Erdely A (2012) Systemic immune cell response in rats after pulmonary exposure to manganese-containing particles collected from welding aerosols. J Immunotoxicol 9:184–192. doi:10.3109/1547691X.2011.650733

    Article  CAS  PubMed  Google Scholar 

  • Bader M, Dietz MC, Ihrig A, Triebig G (1999) Biomonitoring of manganese in blood, urine and axillary hair following low-dose exposure during the manufacture of dry cell batteries. Int Arch Occup Environ Health 72:521–527

    Article  CAS  PubMed  Google Scholar 

  • Baloh RH, Tansey MG, Golden JP, Creedon DJ, Heuckeroth RO, Keck CL, Zimonjic DB, Popescu NC, Johnson EM Jr, Milbrandt J (1997) TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret. Neuron 18:793–802

    Article  CAS  PubMed  Google Scholar 

  • Barker RA (2006) Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol 5:285–286

    Article  PubMed  Google Scholar 

  • Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127

    Article  CAS  PubMed  Google Scholar 

  • Brett PJ, Burtnick MN, Fenno JC, Gherardini FC (2008) Treponema denticola TroR is a manganese- and iron-dependent transcriptional repressor. Mol Microbiol 70:396–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burazin TC, Gundlach AL (1999) Localization of GDNF/neurturin receptor (c-ret, GFRalpha-1 and alpha-2) mRNAs in postnatal rat brain: differential regional and temporal expression in hippocampus, cortex and cerebellum. Brain Res Mol Brain Res 73:151–171

    Article  CAS  PubMed  Google Scholar 

  • Casalino E, Calzaretti G, Landriscina M, Sblano C, Fabiano A, Landriscina C (2007) The Nrf2 transcription factor contributes to the induction of alpha-class GST isoenzymes in liver of acute cadmium or manganese intoxicated rats: comparison with the toxic effect on NAD(P)H:quinone reductase. Toxicology 237:24–34

    Article  CAS  PubMed  Google Scholar 

  • Colland F (2006) Ubiquitin and cancer: from molecular targets and mechanisms to the clinic—AACR Special Conference. IDrugs 9:179–181

    CAS  PubMed  Google Scholar 

  • Diehl JA, Fuchs SY, Haines DS (2010) Ubiquitin and cancer: new discussions for a new journal. Genes Cancer 1:679–680. doi:10.1177/1947601910383565

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould TW, Yonemura S, Oppenheim RW, Ohmori S, Enomoto H (2008) The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. J Neurosci 28:2131–2146

    Article  CAS  PubMed  Google Scholar 

  • Guilarte TR, Burton NC, McGlothan JL, Verina T, Zhou Y, Alexander M, Pham L, Griswold M, Wong DF, Syversen T, Schneider JS (2008) Impairment of nigrostriatal dopamine neurotransmission by manganese is mediated by pre-synaptic mechanism(s): implications to manganese-induced parkinsonism. Journal of neurochemistry 107:1236–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Lee JS, Choi D, Lee Y, Hong S, Choi J, Han S, Ko Y, Kim JA, Kim YM, Jung Y (2009) Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: implication in manganese-induced pulmonary inflammation. Toxicology and applied pharmacology 235:261–267

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Chu NS, Lu CS, Wang JD, Tsai JL, Tzeng JL, Wolters EC, Calne DB (1989) Chronic manganese intoxication. Arch Neurol 46:1104–1106

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Mash DC, Jenner P (2003) Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur J Neurosci 18:2668–2672

    Article  PubMed  Google Scholar 

  • Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci U S A 103:18344–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Iwashita T, Takeda K, Akhand AA, Liu W, Yoshihara M, Asai N, Suzuki H, Takahashi M, Nakashima I (2000) Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic Ret tyrosine kinases. Mol Biol Cell 11:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Kumasaka MY, Takeda K, Hossain K, Iida M, Yajima I, Goto Y, Ohgami N (2011) L-cysteine as a regulator for arsenic-mediated cancer-promoting and anti-cancer effects. Toxicol In Vitro 25:623–629

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Takeda K, Kawamoto Y, Iwashita T, Akhand AA, Senga T, Yamamoto M, Sobue G, Hamaguchi M, Takahashi M, Nakashima I (2002) Repair by Src kinase of function-impaired RET with multiple endocrine neoplasia type 2A mutation with substitutions of tyrosines in the COOH-terminal kinase domain for phenylalanine. Cancer Res 62:2414–2422

    CAS  PubMed  Google Scholar 

  • Kato M, Takeda K, Kawamoto Y, Tsuzuki T, Hossain K, Tamakoshi A, Kunisada T, Kambayashi Y, Ogino K, Suzuki H, Takahashi M, Nakashima I (2004) c-Kit-targeting immunotherapy for hereditary melanoma in a mouse model. Cancer Res 64:801–806

    Article  CAS  PubMed  Google Scholar 

  • Kern CH, Stanwood GD, Smith DR (2010) Preweaning manganese exposure causes hyperactivity, disinhibition, and spatial learning and memory deficits associated with altered dopamine receptor and transporter levels. Synapse 64:363–378. doi:10.1002/syn.20736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga K, Hattori Y, Komori M, Narishima R, Yamasaki M, Hakoshima M, Fukui T, Maitani Y (2010) Combination of RET siRNA and irinotecan inhibited the growth of medullary thyroid carcinoma TT cells and xenografts via apoptosis. Cancer Sci 101:941–947

    Article  CAS  PubMed  Google Scholar 

  • Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwakye GF, Paoliello MM, Mukhopadhyay S, Bowman AB, Aschner M (2015) Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. International journal of environmental research and public health 12:7519–7540. doi:10.3390/ijerph120707519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambooy LH, Gidding CE, van den Heuvel LP, Hulsbergen-van de Kaa CA, Ligtenberg M, Bokkerink JP, De Abreu RA (2003) Real-time analysis of tyrosine hydroxylase gene expression: a sensitive and semiquantitative marker for minimal residual disease detection of neuroblastoma. Clin Cancer Res 9:812–819

    CAS  PubMed  Google Scholar 

  • Laohaudomchok W, Lin X, Herrick RF, Fang SC, Cavallari JM, Christiani DC, Weisskopf MG (2012) Toenail, blood, and urine as biomarkers of manganese exposure. J Occup Environ Med 53:506–510. doi:10.1097/JOM.0b013e31821854da

    Article  Google Scholar 

  • Lee JT, Wheeler TC, Li L, Chin LS (2008) Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death. Hum Mol Genet 17:906–917

    Article  CAS  PubMed  Google Scholar 

  • Lim KL, Lim GG (2011) K63-linked ubiquitination and neurodegeneration. Neurobiol Dis 43:9–16

    Article  CAS  PubMed  Google Scholar 

  • Marco S, Saura J, Perez-Navarro E, Jose Marti M, Tolosa E, Alberch J (2002) Regulation of c-Ret, GFRalpha1, and GFRalpha2 in the substantia nigra pars compacta in a rat model of Parkinson’s disease. J Neurobiol 52:343–351. doi:10.1002/neu.10082

    Article  CAS  PubMed  Google Scholar 

  • Mena I, Court J, Fuenzalida S, Papavasiliou PS, Cotzias GC (1970) Modification of chronic manganese poisoning. Treatment with L-dopa or 5-OH tryptophane N Engl J Med 282:5-10 doi:10.1056/NEJM197001012820102

  • Mena I, Marin O, Fuenzalida S, Cotzias GC (1967) Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology 17:128–136

    Article  CAS  PubMed  Google Scholar 

  • Mijatovic J, Airavaara M, Planken A, Auvinen P, Raasmaja A, Piepponen TP, Costantini F, Ahtee L, Saarma M (2007) Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 27:4799–4809

    Article  CAS  PubMed  Google Scholar 

  • Miranda M, Sorkin A (2007) Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms. Mol Interv 7:157–167

    Article  CAS  PubMed  Google Scholar 

  • Miranda M, Wu CC, Sorkina T, Korstjens DR, Sorkin A (2005) Enhanced ubiquitylation and accelerated degradation of the dopamine transporter mediated by protein kinase C. J Biol Chem 280:35617–35624

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y (2003) Elucidation of endemic neurodegenerative diseases—a commentary. Z Naturforsch C 58:758–752

    Article  Google Scholar 

  • Ohgami N, Ida-Eto M, Shimotake T, Sakashita N, Sone M, Nakashima T, Tabuchi K, Hoshino T, Shimada A, Tsuzuki T, Yamamoto M, Sobue G, Jijiwa M, Asai N, Hara A, Takahashi M, Kato M (2010) c-Ret-mediated hearing loss in mice with Hirschsprung disease. Proc Natl Acad Sci U S A 107:13051–13056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohshima Y, Yajima I, Takeda K, Iida M, Kumasaka M, Matsumoto Y, Kato M (2010) c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines. PLoS One 5:e10279. doi:10.1371/journal.pone.0010279

    Article  PubMed  PubMed Central  Google Scholar 

  • Olanow CW (2004) Manganese-induced parkinsonism and Parkinson’s disease. Ann N Y Acad Sci 1012:209–223

    Article  CAS  PubMed  Google Scholar 

  • Pelicci G, Troglio F, Bodini A, Melillo RM, Pettirossi V, Coda L, De Giuseppe A, Santoro M, Pelicci PG (2002) The neuron-specific Rai (ShcC) adaptor protein inhibits apoptosis by coupling ret to the phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 22:7351–7363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peres TV, Ong LK, Costa AP, Eyng H, Venske DK, Colle D, Goncalves FM, Lopes MW, Farina M, Aschner M, Dickson PW, Dunkley PR, Leal RB (2016) Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics: integrated biometal science 8:597–604. doi:10.1039/c5mt00265f

    Article  CAS  Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66:675–682. doi:10.1097/nen.0b013e31812503cf

    Article  CAS  PubMed  Google Scholar 

  • Pierchala BA, Milbrandt J, Johnson EM Jr (2006) Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J Neurosci 26:2777–2787

    Article  CAS  PubMed  Google Scholar 

  • Posser T, Franco JL, Bobrovskaya L, Leal RB, Dickson PW, Dunkley PR (2009) Manganese induces sustained Ser40 phosphorylation and activation of tyrosine hydroxylase in PC12 cells. Journal of neurochemistry 110:848–856. doi:10.1111/j.1471-4159.2009.06185.x

    Article  CAS  PubMed  Google Scholar 

  • Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW (2006) Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2:e163

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenstock HA, Simons DG, Meyer JS (1971) Chronic manganism. Neurologic and laboratory studies during treatment with levodopa. JAMA 217:1354–1358

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Jeon GS, Cashman NR, Kowall NW, Lee J (2011) Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS. Lab Invest 91:342–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RP, Eketjall S, Aineskog H, Ibanez CF (2005) Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 280:13442–13449

    Article  CAS  PubMed  Google Scholar 

  • Sidoryk-Wegrzynowicz M, Lee E, Mingwei N, Aschner M (2011) Disruption of astrocytic glutamine turnover by manganese is mediated by the protein kinase C pathway. Glia 59:1732–1743. doi:10.1002/glia.21219

  • Tenenbaum L, Humbert-Claude M (2017) Glial cell line-derived neurotrophic factor gene delivery in Parkinson’s disease: a delicate balance between neuroprotection, trophic effects, and unwanted compensatory mechanisms. Frontiers in neuroanatomy 11:29. doi:10.3389/fnana.2017.00029

    Article  PubMed  PubMed Central  Google Scholar 

  • Tu Y, Chen C, Pan J, Xu J, Zhou ZG, Wang CY (2012) The Ubiquitin Proteasome Pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol 5:726–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Maldonado MA (2006) The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol 3:255–261

    CAS  PubMed  Google Scholar 

  • Xiao H, Hirata Y, Isobe K, Kiuchi K (2002) Glial cell line-derived neurotrophic factor up-regulates the expression of tyrosine hydroxylase gene in human neuroblastoma cell lines. Journal of neurochemistry 82:801–808

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, He X, Zhang W, Tan J (1999) Effect of manganese on the brain extrapyramidal development of rat offspring. Wei Sheng Yan Jiu 28:214–217

    CAS  PubMed  Google Scholar 

  • Zhang D, Kanthasamy A, Anantharam V, Kanthasamy A (2011) Effects of manganese on tyrosine hydroxylase (TH) activity and TH-phosphorylation in a dopaminergic neural cell line. Toxicology and applied pharmacology 254:65–71. doi:10.1016/j.taap.2010.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu D (1995) A preliminary study of the effects of manganese on learning abilities of primary school pupils. Zhonghua Yu Fang Yi Xue Za Zhi 29:145–158

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Grants-in-Aid for Scientific Research (A) (15H01743 and 15H02588) and (B) (16H02962, 24390157 and 24406002) and (C) (No. 25460178, 25340052, 16K10152, 16K08343), Grant-in-Aid for Challenging Exploratory Research (26670525), Grant-in-Aid for Scientific Research on Innovative Areas (24108001), Grants-in-Aid for Scientific Research on Innovative Areas (16H01639), and Grant-in-Aid for Research Activity Start-up (15H06274) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Foundation from Center for Advanced Medical and Clinical Research of Nagoya University Hospital, The Mitsubishi Foundation, The Salt Science Research Foundation, Aichi Health Promotion Foundation, AEON Environmental Foundation, Nagono Medical Foundation, Grant for Environmental Research Projects from the Sumitomo Foundation (163119), Ichihara International Scholarship Foundation, and the KENKO-KAGAKU Zaidan (Health Sciences Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kato.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumasaka, M.Y., Yajima, I., Ohgami, N. et al. Manganese-Mediated Decrease in Levels of c-RET and Tyrosine Hydroxylase Expression In Vitro. Neurotox Res 32, 661–670 (2017). https://doi.org/10.1007/s12640-017-9783-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9783-0

Keywords

Navigation