Skip to main content

Advertisement

Log in

Assessing Environmental Exposure to β-N-Methylamino-l-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

β-N-Methylamino-l-alanine (BMAA) is a naturally occurring non-protein amino acid produced by cyanobacteria, accumulated through natural food webs, found in mammalian brain tissues. Recent evidence indicates an association between BMAA and neurological disease. The accurate detection and quantification of BMAA in food and environmental samples are critical to understanding BMAA metabolism and limiting human exposure. To date, there have been more than 78 reports on BMAA in cyanobacteria and human samples, but different methods give conflicting data and divergent interpretations in the literature. The current work was designed to determine whether orthogonal chromatography and mass spectrometry methods give consistent data interpretation from a single sample matrix using the three most common analytical methods. The methods were recreated as precisely as possible from the literature with optimization of the mass spectrometry parameters specific to the instrument. Four sample matrices, cyanobacteria, human brain, blue crab, and Spirulina, were analyzed as 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives, propyl chloroformate (PCF) derivatives separated by reverse phase chromatography, or underivatized extracts separated by HILIC chromatography. The three methods agreed on positive detection of BMAA in cyanobacteria and no detected BMAA in the sample of human brain matrix. Interpretation was less clear for a sample of blue crab which was strongly positive for BMAA by AQC and PCF but negative by HILIC and for four spirulina raw materials that were negative by PCF but positive by AQC and HILIC. Together, these data demonstrate that the methods gave different results and that the choices in interpretation of the methods determined whether BMAA was detected. Failure to detect BMAA cannot be considered proof of absence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Banack SA, Murch SJ (2017) Methods for the analysis of β-N-methylamino-L-alanine: what is known, and what remains to be determined. Neurotox Res. doi:10.1007/s12640-017-9744-7

  • Banack SA, Murch SJ, Cox PA (2006) Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J Ethnopharmacol 106:97–104

    Article  PubMed  Google Scholar 

  • Beach DG, Kerrin ES, Quilliam MA (2015) Selective quantitation of the neurotoxin BMAA by use of hydrophilic-interaction liquid chromatography–differential mobility spectrometry–tandem mass spectrometry (HILIC–DMS–MS/MS). Anal Bioanal Chem 407:8397–8409

    Article  CAS  PubMed  Google Scholar 

  • Betz JM, Brown PN, Roman MC (2011) Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 82:44–52

    Article  CAS  PubMed  Google Scholar 

  • Brandt LE, Pablo J, Compton A, Hammerschlag N, Mash DC (2010) Cyanobacterial blooms and the occurrence of the neurotoxin, beta-N-methylamino-L-alanine (BMAA), in South Florida aquatic food webs. Harmful Algae 9:620–635

    Article  Google Scholar 

  • Cox PA, Sacks OW (2002) Cycad neurotoxins, consumption of flying foxes, and ALS-PDC disease in Guam. Neurology 58:956–959

    Article  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins through the ecosystem: implications for ALS-PDC in Guam. Proc Natl Acad Sci USA 100(23):13380–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074–5078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA (2016) Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc R Soc B 283:20152397

    Article  PubMed  PubMed Central  Google Scholar 

  • de Munck E, Munoz-Saez E, Miguel BC, Solas MT, Ojeda I, Martinez A, Gill C, Arahuetes RM (2013) Β-N-methylamino-L-alanine causes neurological and pathological phenotypes mimicking amyotrophic lateral sclerosis (ALS): the first step towards an experimental model for sporatic ALS. Environ Toxicol Pharmacol 36:243–255

    Article  PubMed  Google Scholar 

  • Downing S, Contardo-Jara V, Pflugmacher S, Downing TG (2014) The fate of the cyanobacterial toxin beta-N-methylamino-L-alanine in freshwater mussels. Ecotoxicol Environ Saf 101:51–58

    Article  CAS  PubMed  Google Scholar 

  • Dunlop R, Cox P, Banack S, Rodgers A (2013) The non-protein amino acid BMAA is misincorporated into human proteins in place of L-serine causing protein misfolding and aggregation. PLoS One 8(9):1–8

    Article  Google Scholar 

  • Esterhuizen-Londt M, Downing S, Downing TG (2011) Improved sensitivity using liquid chromatography mass spectrometry (LC-MS) for detection of propyl chloroformate derivatised β-N-methylamino-L-alanine (BMAA) in cyanobacteria. Water SA 37:133–138

    Article  CAS  Google Scholar 

  • Faassen EJ, Gillissen F, Zweers HA, Lurling M (2009) Determination of the neurotoxins BMAA (beta-N-methylamino-L-alanine) and DAB (alpha-,gamma-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms. Amyotroph Lateral Scler 10:79–84

    Article  CAS  PubMed  Google Scholar 

  • Faassen EJ (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins 6:1109–1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Faassen EJ, Antoniou MG, Beekman-Lukassen W, Blahova L, Christophoridis C, Combes A, Edwards C, Fastner J, Harmsen J, Hiskia A, Ilag LL, Kaloudis T, Lopicic S, Lürling M, Mazur-Marzec H, Meriluoto J, Porojan C, Viner-Mozzini Y, Zguna NA (2016) Collaborative evaluation of LC-MS/MS based methods for BMAA analysis: soluble bound BMAA found to be an important fraction. Mar Drugs 14(3):45

    Article  PubMed Central  Google Scholar 

  • Faassen EJ, Gillissen F, Lurling M (2012) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS One 7:e36667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glover WB, Liberto CM, McNeil WS, Banack SA, Shipley PR, Murch SJ (2012) Reactivity of β-methylamino-L-alanine in complex sample matrices complicates detection and quantification by mass spectrometry. Anal Chem 84:7946–7953

    Article  CAS  PubMed  Google Scholar 

  • Glover WB, Murch SJ (2014) Analysis of β-methylamino-alanine in environmental and food samples. Recent Adv Phytochem 44:149–174

    CAS  Google Scholar 

  • Glover WB, Baker TC, Murch SJ, Brown PN (2015) Determination of BMAA, AEG, and DAB in food products containing cyanobacteria by ultra-performance liquid chromatography and tandem mass spectrometry: single-laboratory validation. J AOAC 98:1–7

    Article  Google Scholar 

  • Jiang L, Aigret B, De Borggraeve WM, Spacil Z, Ilag LL (2012) (2012) Selective LC-MS/MS method for the identification of BMAA from its isomers in biological samples. Anal Bioanal Chem 403:1719–1730

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Kiselova N, Rosen J, Ilag LL (2014) Quantification of neurotoxin BMAA (b-N-methylamino-L-alanine) in seafood from Swedish markets. Sci Rep 4(6931):1–7

    CAS  Google Scholar 

  • Jonasson S, Eriksson J, Berntzon L, Spácil Z, Ilag LL, Ronnevi L-O, Rasmussen U, Bergman B (2010) Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc Natl Acad Sci USA 107:9252–9257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson O, Jiang L, Ersson L, Malmstrom T, Ilag LL, Brittebo EB (2015) Environmental neurotoxin interaction with proteins: dose-dependent increase of free and protein-associated BMAA (beta-N-methylamino-L-alanine) in neonatal rat brain. Sci Rep 5:15570. doi:10.1038/srep15570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krüger T, Mönch B, Oppenhäuser S, Luckas B (2010) LC-MS/MS Determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon 55(2–3):547–557

    Article  PubMed  Google Scholar 

  • Lage S, Burian A, Rasmussen U, Costa PR, Annadotter H, Godhe A, Rydberg S (2016) BMAA extraction of cyanobacteria samples: which method to choose? Environ Sci Pollut Res 23:338–350

    Article  CAS  Google Scholar 

  • Li A, Song J, Hu Y, Deng L, Ding L, Li M (2016) New typical vector of neurotoxin β-N-Methylamino-Lalanine (BMAA) in the marine benthic ecosystem. Mar Drugs 14:202

  • Li AF, Fan H, Ma FF, McCarron P, Thomas K, Tang XH, Quilliam MA (2012) Elucidation of matrix effects and performance of solid-phase extraction for LC-MS/MS analysis of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) neurotoxins in cyanobacteria. Analyst 137:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • McCarron P, Logan AC, Giddings SD, Quilliam MA (2014) Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry. Aquatic Biosystems 10:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondo K, Glover WB, Murch SJ, Liu G, Cai Y, Davis D, Mash D (2014) Environmental neurotoxins β-N-methylamino-L-alanine (BMAA) and mercury in shark cartilage dietary supplements. Food Chem Toxicol 70:26–32

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Banack SB, Cox PA (2004a) A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proc Natl Acad Sci USA 101:12228–12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004b) Occurrence of ß-methylamino-L-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurologica Scand 110:267–269

    Article  CAS  Google Scholar 

  • Nunn PB, O’Brien P, Pettit LD, Pyburn SI (1989) Complexes of zinc, copper, and nickel with the non-protein amino acid L-α-amino-β-methylaminopropionic acid: a naturally occurring neurotoxin. J Inorg Biochem 37:175–183

    Article  CAS  PubMed  Google Scholar 

  • Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAA in ALS and Alzheimer's disease. Acta Neuro Scand 120:216–225

    Article  CAS  Google Scholar 

  • Reveillon D, Abadie E, Sechet V, Masseret E, Hess P, Amzil Z (2015) β-N-methylamino-L-alanine (BMAA) and isomers: distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar Environ Res 110:8–18

    Article  CAS  PubMed  Google Scholar 

  • Rosén J, Hellenäs K-E (2008) Determination of the neurotoxin BMAA (beta-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS. Analyst 133:1785–1789

    Article  PubMed  Google Scholar 

  • Rosén J, Westerberg E, Schmiedt S, Hellenäs K (2016) BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon 109:45–50

    Article  PubMed  Google Scholar 

  • Roy-Lachapelle, A, Solliec, M, Bouchard, MF, Sauvé, S. (2017) Detection of cyanotoxins in algae dietary supplements. Toxins, 9(3).

  • Spencer P, Nunn P, Hugon J, Ludolph A, Roy D (1986) Motorneurone disease on Guam: possible role of a food neurotoxin. Lancet 327:965

    Article  Google Scholar 

  • Spencer PS, Palmera VS, Kisby GE (2016) Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 56:269–283

    Article  PubMed  Google Scholar 

  • Tian K-W, Jiang H, Wang B-B, Zhang F, Han S (2016) Intravenous injection of L-BMAA induces a rat model with comprehensive characteristics of amyotrophic lateral sclerosis/Parkinson–dementia complex. Toxicol Res 5:79–96

    Article  Google Scholar 

  • Weiss JH, Koh J, Choi DW (1989) Neurotoxicity of β-N-methylamino-L-alanine (BMAA) and β-N-oxalylamino-L-alanine (BOAA) on cultured cortical neurons. Brain Res 497:64–71

    Article  CAS  PubMed  Google Scholar 

  • Whiting MG (1963) Toxicity of cycads. Econ Bot 17:271–302

  • Yin HZ, Yu S, Hsu CI, Liu J, Aca A, Wu E, Tao A, Chiang BJ, Weiss JH (2014) Intrathecal infusion of BMAA induces selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord. Exp Neurol 261:1–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding support from the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, and the Canadian Foundation for Innovation are gratefully acknowledged. Establishment of the PCF method for analysis would not have been possible without the expert guidance of Drs. Timothy and Simone Downing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Murch.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, T.C., Tymm, F.J.M. & Murch, S.J. Assessing Environmental Exposure to β-N-Methylamino-l-Alanine (BMAA) in Complex Sample Matrices: a Comparison of the Three Most Popular LC-MS/MS Methods. Neurotox Res 33, 43–54 (2018). https://doi.org/10.1007/s12640-017-9764-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9764-3

Keywords

Navigation