Skip to main content

Methamidophos, an Organophosphorus Insecticide, Induces Pro-aggressive Behaviour in Mice

Abstract

Although evidence indicates that exposure to organophosphorus (OP) pesticides induces neurobehavioral disorders, little is known about the effects of OP on aggressive behaviour. Our study investigated the effects of repeated exposure to an OP pesticide, methamidophos, on the isolation-induced aggressive behaviour in mice. Forty seven male mice were individually housed for a month. Socially isolated animals were then confronted with a standard non-isolated opponent for 15 min (pre-treatment trial), and the latency and frequency of aggressive and general exploratory behaviours were recorded. Based on the presence of attack behaviour in the pre-treatment trial, mice were classified as isolation-induced aggressive and non-aggressive. All mice were then treated for 7 days with methamidophos (3.5 mg/kg/day, n = 22, intraperitoneal (i.p.)) or saline (1 mL/kg/day, control group, n = 25, i.p.), and a second trial was performed. Repeated exposure to methamidophos induced attack behaviour in non-aggressive mice. The treatment with methamidophos also decreased plasma butyrylcholinesterase and brain acetylcholinesterase activity. These results suggest that methamidophos has a pro-aggressive effect on socially isolated mice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alcorn JL, BS, Gowin JL et al (2013) Combined antisocial substance use disorder. J Neuropsychiatry Clin Neurosci 25:229–232

    Article  PubMed  PubMed Central  Google Scholar 

  • Aldridge JE, Levin ED, Seidler FJ, Slotkin TA (2005) Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect 113:527–531. doi:10.1289/ehp.7867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali SF, Chandra O, Hasan M (1980) Effects of an organo-phosphate (dichlorvos) on open-field behavior and locomotor activity—correlation with regional brain monoamine levels. Psychopharmacology 68:37–42

    CAS  Article  PubMed  Google Scholar 

  • Allikmets L (1974) Cholinergic mechanisms in aggressive behaviour. Med Biol 51:19–30

    Google Scholar 

  • Allon N, Rabinovitz I, Manistersky E et al (2005) Acute and long-lasting cardiac changes following a single whole-body exposure to sarin vapor in rats. Toxicol Sci 87:385–390

    CAS  Article  PubMed  Google Scholar 

  • Amr MM, Halim ZS, Moussa SS (1997) Psychiatric disorders among Egyptian pesticide applicators and formulators. Environ Res 73:193–199. doi:10.1006/enrs.1997.3744

    CAS  Article  PubMed  Google Scholar 

  • Beleslin DB, Samardzić R (1979) Evidence of central cholinergic mechanisms in the appearance of affective aggressive behaviour: dissociation of aggression from autonomic and motor phenomena. Psychopharmacology 62:163–167. doi:10.1007/BF00427131

    CAS  Article  PubMed  Google Scholar 

  • Bell R, Warburton DM, Brown K (1985) Drugs as research tools in psychology: cholinergic drugs and aggression. Neuropsychobiology 14:181–192

    CAS  Article  PubMed  Google Scholar 

  • Beseler C, Stallones L, Hoppin JA et al (2006) Depression and pesticide exposures in female spouses of licensed pesticide applicators in the agricultural health study cohort. J Occup Environ Med 48:1005–1013. doi:10.1097/01.jom.0000235938.70212.dd

    Article  PubMed  PubMed Central  Google Scholar 

  • Beseler CL, Stallones L, Hoppin JA et al (2008) Depression and pesticide exposures among private pesticide applicators enrolled in the agricultural health study. Environ Health Perspect 116:1713–1719. doi:10.1289/ehp.11091

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchetti A, Trabucchi M, Cipriani G (2003) Aggressive behaviour associated with donepezil treatment: a case report. Int J Geriatr Psychiatry 18:657–658. doi:10.1002/gps.824

    Article  PubMed  Google Scholar 

  • Bouman WP, Pinner G (1998) Violent behavior-associated with donepezil. Am J Psychiatry 155:1626–1627

    CAS  Article  PubMed  Google Scholar 

  • Brain PF (1980) Adaptive aspects of hormonal correlates of attack and defence in laboratory mice: a study in ethobiology. Prog Brain Res 53:391–413. doi:10.1016/S0079-6123(08)60078-3

    CAS  Article  PubMed  Google Scholar 

  • Brain P, Poole A (1974) Some studies on the use of “standard opponents” in intermale aggression testing in TT albino mice. Behaviour 53:539–548

    Google Scholar 

  • Brasil (1978) Portaria GM no 3.214, de 08 de junho de 1978. NR 7 -Programa de controle médico de saúde ocupacional. Diário Of da República Fed do Bras 1–16

  • Brimijoin S, Chen VP, Pang YP et al (2015) Physiological roles for butyrylcholinesterase: a BChE-ghrelin axis. Chem Biol Interact:1–5. doi:10.1016/j.cbi.2016.02.013

  • Caldas ED, Boon PE, Tressou J (2006) Probabilistic assessment of the cumulative acute exposure to organophosphorus and carbamate insecticides in the Brazilian diet. Toxicology 222:132–142. doi:10.1016/j.tox.2006.02.006

    CAS  Article  PubMed  Google Scholar 

  • Caldas ED, De Souza MV, Jardim ANO (2011) Dietary risk assessment of organophosphorus and dithiocarbamate pesticides in a total diet study at a Brazilian university restaurant. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:71–79. doi:10.1080/19440049.2010.538935

    CAS  Article  PubMed  Google Scholar 

  • Charpentier (1969) Analysis and measurement of aggression in mice. In: Aggressive behavior. pp 86–99

  • Chen VP, Gao Y, Geng L et al (2015) Plasma butyrylcholinesterase regulates ghrelin to control aggression. Proc Natl Acad Sci 112:201421536

    Google Scholar 

  • Chowdhary S, Bhattacharyya R, Banerjee D (2014) Acute organophosphorus poisoning. Clin Chim Acta 431:66–76. doi:10.1016/j.cca.2014.01.024

    CAS  Article  PubMed  Google Scholar 

  • D’Amato FR, Castellano C (1989) Behavioral effects of morphine in mice: role of experimental housing. Pharmacol Biochem Behav 34:361–365. doi:10.1016/0091-3057(89)90327-4

    Article  PubMed  Google Scholar 

  • De Vriese C, Gregoire F, Lema-Kisoka R et al (2004) Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites. Endocrinology 145:4997–5005. doi:10.1210/en.2004-0569

    CAS  Article  PubMed  Google Scholar 

  • Devinsky O, Kernan J, Bear DM (1992) Aggressive behavior following exposure to cholinesterase inhibitors. J Neuropsychiatry Clin Neurosci 4:189–194

    CAS  Article  PubMed  Google Scholar 

  • Dietz AA, Rubinstein HM, Lubrano T (1973) Colorimetric determination of serum cholinesterase and its genetic variants by the propionylthiocholine-dithiobis(nitrobenzoic acid)procedure. Clin Chem 19:1309–1313

    CAS  PubMed  Google Scholar 

  • Dutta S, Sengupta P (2016) Men and mice: relating their ages. Life Sci 152:244–248. doi:10.1016/j.lfs.2015.10.025

    CAS  Article  PubMed  Google Scholar 

  • Ecobichon DJ (2000) Our changing perspectives on benefits and risks of pesticides: a historical overview. Neurotoxicology 21:211–218

    CAS  PubMed  Google Scholar 

  • Eddleston M, Roberts D, Buckley N (2002) Management of severe organophosphorus pesticide poisoning. Crit Care 6:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Eddleston M, Buckley NA, Eyer P et al (2008) Management of acute organophosphorus pesticide poisoning. Lancet (London, England) 371:597–607. doi:10.1016/S0140-6736(07)61202-1

    CAS  Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres VJ, Featherstone RM (1961) A new and rapid colorimetric of acetylcholinesterase determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Article  PubMed  Google Scholar 

  • Felip CM, Rodriguez-Arias M, Aguilar MA, Minarro J (2001) Antiaggressive and motor effects of the DA release inhibitor CGS 10746B. Aggress Behav 27:382–390. doi:10.1002/ab.1023

    CAS  Article  Google Scholar 

  • Ferrer A (2003) Pesticide poisoning. An Sist Sanit Navar 26:1–2

    Google Scholar 

  • Fone KCF, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents—relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087–1102. doi:10.1016/j.neubiorev.2008.03.003

    CAS  Article  PubMed  Google Scholar 

  • Goldberg DP, Gater R, Sartorius N et al (1997) The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol Med 27:191–197. doi:10.1017/S0033291796004242

    CAS  Article  PubMed  Google Scholar 

  • Gray AJ (1982) Distribution and excretion of [ 14CH3S ] methamidophos after intravenous administration of a toxic dose and the relationship with anticholinesterase activity. Pestic Biochem Physiol 18:28–37

    CAS  Article  Google Scholar 

  • Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Haller J, Kruk MR (2006) Normal and abnormal aggression: human disorders and novel laboratory models. Neurosci Biobehav Rev 30:292–303. doi:10.1016/j.neubiorev.2005.01.005

    Article  PubMed  Google Scholar 

  • Hsieh LS, Wen JH, Miyares L, Lombroso PJ, Bordey A (2017) Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks. Neuroscience Letters 637:142–147

  • Hulse EJ, Davies JOJ, Simpson AJ et al (2014) Respiratory complications of organophosphorus nerve agent and insecticide poisoning. Implications for respiratory and critical care. Am J Respir Crit Care Med 190:1342–1354. doi:10.1164/rccm.201406-1150CI

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43:139–144

    CAS  PubMed  Google Scholar 

  • Jiang C, Li X, Phillips MR, Xu Y (2013) Matched case-control study of medically serious attempted suicides in rural China. Shanghai Arch psychiatry 25:22–31. doi:10.3969/j.issn.1002-0829.2013.01.006

    PubMed  PubMed Central  Google Scholar 

  • Koike H, Ibi D, Mizoguchi H et al (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202:114–121. doi:10.1016/j.bbr.2009.03.028

    CAS  Article  PubMed  Google Scholar 

  • Krsiak M (1975) Timid singly-housed mice: their value in prediction of psychotropic activity of drugs. Br J Pharmacol 55:141–150. doi:10.1111/j.1476-5381.1975.tb07622.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lassiter TL, Marshall RS, Jackson LC et al (2003) Automated measurement of acetylcholinesterase activity in rat peripheral tissues. Toxicology 186:241–253. doi:10.1016/S0300-483X(02)00752-7

    CAS  Article  PubMed  Google Scholar 

  • Lima CS, Ribeiro-Carvalho A, Filgueiras CC et al (2009a) Exposure to methamidophos at adulthood elicits depressive-like behavior in mice. Neurotoxicology 30:471–478. doi:10.1016/j.neuro.2009.01.009

    CAS  Article  PubMed  Google Scholar 

  • Lima CS, Nunes-Freitas AL, Ribeiro-Carvalho A et al (2011) Exposure to methamidophos at adulthood adversely affects serotonergic biomarkers in the mouse brain. Neurotoxicology 32:718–724. doi:10.1016/j.neuro.2011.08.002

    CAS  Article  PubMed  Google Scholar 

  • Lisboa SF, Reis DG, da Silva AL et al (2010) Cannabinoid CB1 receptors in the medial prefrontal cortex modulate the expression of contextual fear conditioning. Int J Neuropsychopharmacol 13:1163–1173. doi:10.1017/S1461145710000684

    CAS  Article  PubMed  Google Scholar 

  • López-Crespo GA, Carvajal F, Flores P et al (2007a) Time course of biochemical and behavioural effects of a single high dose of chlorpyrifos. Neurotoxicology 28:541–547. doi:10.1016/j.neuro.2007.01.013

    Article  PubMed  Google Scholar 

  • Lu JL (2010) Analysis of trends of the types of pesticide used, residues and related factors among farmers in the largest vegetable producing area in the Philippines. J Rural Med JRM / Japanese Assoc Rural Med 5:184–189. doi:10.2185/jrm.5.184

    Google Scholar 

  • Lumley LA, Robison CL, Slusher BS et al (2004) Reduced isolation-induced aggressiveness in mice following NAALADase inhibition. Psychopharmacology 171:375–381. doi:10.1007/s00213-003-1610-z

    CAS  Article  PubMed  Google Scholar 

  • Mackenzie Ross SJ, Brewin CR, Curran HV et al (2010) Neuropsychological and psychiatric functioning in sheep farmers exposed to low levels of organophosphate pesticides. Neurotoxicol Teratol 32:452–459. doi:10.1016/j.ntt.2010.03.004

    CAS  Article  PubMed  Google Scholar 

  • Mackenzie Ross S, McManus IC, Harrison V, Mason O (2013) Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Crit Rev Toxicol 43:21–44. doi:10.3109/10408444.2012.738645

    Article  Google Scholar 

  • Malick JB (1979) The pharmacology of isolation-induced aggressive behavior in mice. Curr Dev Psychopharmacol 5:1–27

    CAS  PubMed  Google Scholar 

  • Maretto GX, Do Nascimento CP, Passamani LM et al (2012) Acute exposure to the insecticide O,S-dimethyl phosphoramidothioate (methamidophos) leads to impairment of cardiovascular reflexes in rats. Ecotoxicol Environ Saf 80:203–207. doi:10.1016/j.ecoenv.2012.03.001

    CAS  Article  PubMed  Google Scholar 

  • Melnyk LJ, Wang Z, Li Z, Xue J (2016) Prioritization of pesticides based on daily dietary exposure potential as determined from the SHEDS model. Food Chem Toxicol 96:167–173. doi:10.1016/j.fct.2016.07.025

    CAS  Article  PubMed  Google Scholar 

  • Miczek K (1983) Ethological analysis of drug action on aggression and defense. Prog Neuro-Psychopharmacol Biol Psychiatry 7:519–524

    CAS  Article  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181. doi:10.1016/S0166-4328(01)00298-4

    CAS  Article  PubMed  Google Scholar 

  • Miczek KA, Fish EW, De Bold JF, De Almeida RM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gama-aminobutyric acid systems. Psychopharmacology 163:434–458. doi:10.1007/s00213-002-1139-6

    CAS  Article  PubMed  Google Scholar 

  • Noriega-Ortega BR, Armienta-Aldana E, Cervantes-Pompa JÁ et al (2011) GABA and dopamine release from different brain regions in mice with chronic exposure to organophosphate methamidophos. J Toxicol Pathol 24:163–168. doi:10.1293/tox.24.163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • O’Malley M (1997) Clinical evaluation of pesticide exposure and poisonings. Lancet 349:1161–1166

    Article  PubMed  Google Scholar 

  • Olivier B, Mos J, van der Heyden J, Hartog J (1989) Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology 97:154–156. doi:10.1007/BF00442239

    CAS  Article  PubMed  Google Scholar 

  • Parmigiani S, Brain PF (1983) Effects of residence, aggressive experience and intruder familiarity on attack shown by male mice. Behav Process 8:45–57

    CAS  Article  Google Scholar 

  • Parrón T, Hernández AF, Villanueva E (1996) Increased risk of suicide with exposure to pesticides in an intensive agricultural area. A 12-year retrospective study. Forensic Sci Int 79:53–63. doi:10.1016/0379-0738(96)01895-6

    Article  PubMed  Google Scholar 

  • Pelegrino JR, Calore EE, Saldiva PHN et al (2006) Morphometric studies of specific brain regions of rats chronically intoxicated with the organophosphate methamidophos. Ecotoxicol Environ Saf 64:251–255. doi:10.1016/j.ecoenv.2005.05.002

    CAS  Article  PubMed  Google Scholar 

  • Peris-Sampedro F, Cabré M, Basaure P et al (2015) Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. Environ Res 142:169–176

    CAS  Article  PubMed  Google Scholar 

  • Pires RGW, Pereira SRC, Oliveira-Silva IF et al (2005) Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff syndrome. Behav Brain Res 162:11–21. doi:10.1016/j.bbr.2005.02.032

    CAS  Article  PubMed  Google Scholar 

  • Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33. doi:10.1016/S0014-2999(03)01272-X

    CAS  Article  PubMed  Google Scholar 

  • Pucilowski O, Eichelman B, Overstreet D et al (1990) Enhanced affective aggression in genetically bred hypercholinergic rats. Neuropsychobiology 91:37–41

    Google Scholar 

  • Ray A, Sen P, Alkondon M (1989) Biochemical and pharmacological evidence for central cholinergic regulation of shock-induced aggression in rats. Pharmacol Biochem Behav 32:867–871

    CAS  Article  PubMed  Google Scholar 

  • Recena MCP, Caldas ED, Pires DX, Pontes ERJC (2006a) Pesticides exposure in Culturama, Brazil--knowledge, attitudes, and practices. Environ Res 102:230–236. doi:10.1016/j.envres.2006.01.007

    CAS  Article  PubMed  Google Scholar 

  • Recena MCP, Pires DX, Caldas ED (2006b) Acute poisoning with pesticides in the state of Mato Grosso do Sul, Brazil. Sci Total Environ 357:88–95. doi:10.1016/j.scitotenv.2005.04.029

    CAS  Article  PubMed  Google Scholar 

  • Redolat R, Gómez MC, Vicens P, Carrasco MC (2005) Bupropion effects on aggressiveness and anxiety in OF1 male mice. Psychopharmacology 177:418–427. doi:10.1007/s00213-004-1965-9

    CAS  Article  PubMed  Google Scholar 

  • Ricceri L, Venerosi A, Capone F et al (2006) Developmental neurotoxicity of organophosphorous pesticides: fetal and neonatal exposure to chlorpyrifos alters sex-specific behaviors at adulthood in mice. Toxicol Sci 93:105–113. doi:10.1093/toxsci/kfl032

    CAS  Article  PubMed  Google Scholar 

  • Robinson CP, Beiergrohslein D (1982) Inhibition of human erythrocyte and plasma cholinesterases by methamidophos. J Appl Toxicol 2:217–218

    CAS  Article  PubMed  Google Scholar 

  • Rosenstock L, Keifer M, Daniell WE et al (1991) Chronic central nervous system effects of acute organophosphate pesticide intoxication. The Pesticide Health Effects Study Group Lancet 338:223–227

    CAS  Google Scholar 

  • Sánchez C, Hyttel J (1994) Isolation-induced aggression in mice: effects of 5-hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. Eur J Pharmacol 264:241–247. doi:10.1016/0014-2999(94)00470-6

    Article  PubMed  Google Scholar 

  • Sánchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110:53–59. doi:10.1007/BF02246950

    Article  PubMed  Google Scholar 

  • Sánchez-Amate MC, Flores P, Sánchez-Santed F (2001a) Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 12:285–292

    Article  PubMed  Google Scholar 

  • Sánchez-Amate MC, Flores P, Sánchez-Santed F (2001b) Effects of chlorpyrifos in the plus-maze model of anxiety. Behav Pharmacol 12:285–292. doi:10.1097/00008877-200107000-00007

    Article  PubMed  Google Scholar 

  • Sarin S, Gill KD (1998) Biochemical and behavioral deficits in adult rat following chronic dichlorvos exposure. Pharmacol Biochem Behav 59:1081–1086. doi:10.1016/S0091-3057(97)00517-0

    CAS  Article  PubMed  Google Scholar 

  • Savage EP, Keefe TJ, Mounce LM et al (1988) Chronic neurological sequelae of acute organophosphate pesticide poisoning. Arch Environ Heal An Int J 43:38–45

    CAS  Article  Google Scholar 

  • Singh AK (1985) Kinetic analysis of inhibition of brain and red blood cell acetylcholinesterase and plasma cholinesterase by acephate or methamidophos. Toxicol Appl Pharmacol 81:302–309. doi:10.1016/0041-008X(85)90167-X

    CAS  Article  PubMed  Google Scholar 

  • Slotkin TA, Tate CA, Ryde IT et al (2006) Organophosphate insecticides target the serotonergic system in developing rat brain regions: disparate effects of diazinon and parathion at doses spanning the threshold for cholinesterase inhibition. Environ Health Perspect 114:1542–1546. doi:10.1289/ehp.9337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Smith DE, King MB, Hoebel BG (1970) Lateral hypothalamic control of killing: evidence for a cholinoceptive mechanism. Science 167(80):900–901. doi:10.2307/1728444

    CAS  Article  PubMed  Google Scholar 

  • Socko R, Gralewicz S, Gorny R (1999) Long-term behavioural effects of a repeated exposure to chlorphenvinphos in rats. Int J Occup Med Env Heal 12:105–117

    CAS  Google Scholar 

  • Stallones L, Beseler C (2002) Pesticide poisoning and depressive symptoms among farm residents. Ann Epidemiol 12:389–394

    Article  PubMed  Google Scholar 

  • Stephens R, Spurgeon A, Calvert IA et al (1995) Neuropsychological effects of long-term exposure to organophosphates in sheep dip. Lancet 345:1135–1139. doi:10.1016/S0140-6736(95)90976-1

    CAS  Article  PubMed  Google Scholar 

  • Sustková-Fiserová M, Vávrová J, Krsiak M (2009) Brain levels of GABA, glutamate and aspartate in sociable, aggressive and timid mice: an in vivo microdialysis study. Neuro Endocrinol Lett 30:79–84

    PubMed  Google Scholar 

  • van Erp AM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20:9320–9325

    PubMed  Google Scholar 

  • Vellom DC, Radić Z, Li Y et al (1993) Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32:12–17. doi:10.1021/bi00052a003

    CAS  Article  PubMed  Google Scholar 

  • Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 36:653–658. doi:10.1016/0031-9384(86)90349-5

    CAS  Article  PubMed  Google Scholar 

  • Wesseling C, De Joode BVW, Keifer M, et al (2010) Symptoms of psychological distress and suicidal ideation among banana workers with a history of poisoning by organophosphate or n-methyl carbamate pesticides 778–785. doi: 10.1136/oem.2009.047266

  • Winslow JT, Camacho F (1995) Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology 121:164–172. doi:10.1007/BF02245626

    CAS  Article  PubMed  Google Scholar 

  • Yu B, Ding B, Shen H et al (2015) Analysis of reports of cases of pesticide poisoning in Jiangsu Province, China, from 2006 to 2013. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 33:194–198

    PubMed  Google Scholar 

  • Zivari-Rahman M, Lesani M, Shokouhi-Moqaddam S (2012) Comparison of mental health, aggression and hopefulness between student drug-users and healthy students (a study in Iran). Addict Heal 4:36–42

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from FAPES (no. 3112011/2005). FAPES is a public research foundation and had no involvement with the study design, collection, analysis and interpretation of data. We acknowledge the Multiuser Laboratory of Biomolecular Analysis UFES (LABIOM) in the Health Sciences Center of the Federal University of Espírito Santo, Brazil, for providing the equipment necessary for the brain AChE assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Nívea Sampaio.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, C.P., Maretto, G.X., Marques, G.L.M. et al. Methamidophos, an Organophosphorus Insecticide, Induces Pro-aggressive Behaviour in Mice. Neurotox Res 32, 398–408 (2017). https://doi.org/10.1007/s12640-017-9750-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9750-9

Keywords

  • Methamidophos
  • Aggressive behaviour
  • Mice
  • Butyrylcholinesterase
  • Acetylcholinesterase