Skip to main content

Advertisement

Log in

Neurobehavioural Toxicity of Iron Oxide Nanoparticles in Mice

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles (Fe2O3-NPs) are widely used in various biomedical applications, extremely in neurotheranostics. Simultaneously, Fe2O3-NP usage is of alarming concern, as its exposure to living systems causes deleterious effects due to its redox potential. However, study on the neurobehavioural impacts of Fe2O3-NPs is very limited. In this regard, adult male mice were intraperitoneally administered with Fe2O3-NPs (25 and 50 mg/kg body weight) once a week for 4 weeks. A significant change in locomotor behaviour and spatial memory was observed in Fe2O3-NP-treated animals. Damages to blood–brain barrier permeability by Fe2O3-NPs and their accumulation in brain regions were evidenced by Evan’s blue staining, iron estimation and Prussian blue staining. Elevated nitric oxide, acetylcholinesterase, lactate dehydrogenase leakage and demyelination were observed in the Fe2O3-NP-exposed brain tissues. Imbalanced levels of ROS generation and antioxidant defence mechanism (superoxide dismutase and catalase) cause damages to lipids, proteins and DNA. PARP and cleaved caspase 3 expression levels were found to be increased in the Fe2O3-NP-exposed brain regions which confirms DNA damage and apoptosis. Thus, repeated Fe2O3-NP exposure causes neurobehavioural impairments by nanoparticle accumulation, oxidative stress and apoptosis in the mouse brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acker CI, Souza AC, Pinton S, Rocha JT, Friggi CA, Zanella R, Nogueira CW (2011) Repeated malathion exposure induces behavioral impairment and AChE activity inhibition in brains of rat pups. Ecotoxicol Environ Safety 74:2310–2315

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ali YO, Escala W, Ruan K, Zhai RG (2011) Assaying locomotor, learning, and memory deficits in drosophila models of neurodegeneration. J Vis Exp 49:2504–2509

    Google Scholar 

  • Anderson GJ (2007) Mechanisms of iron loading and toxicity. Am J Hematol 82:1128–1131

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Budni P, de Lima MN, Polydoro M, Moreira JC, Schroder N, Dal-Pizzol F (2007) Antioxidant effects of selegiline in oxidative stress induced by iron neonatal treatment in rats. Neurochem Res 32:965–972

    Article  CAS  PubMed  Google Scholar 

  • Charlotte SJ, Lone G, Erik B (1997) Acetylcholinestrase inhibition and altered locomotr behaviour in the carabid beetle pterostichus cupres. A linkage between biomarkers at two levels of biological complexity. Environ Toxicol Chem 16:1727–1732

    Article  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  CAS  PubMed  Google Scholar 

  • Comănescu MV, Mocanu MA, Anghelache L, Marinescu B, Dumitrache F, Bădoi AD, Manda G (2015) Toxicity of L-dopa coated iron oxide nanoparticles in intraperitoneal delivery setting—preliminary preclinical study. Romanian J Morphol Embryol 56:691–696

    Google Scholar 

  • De Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC, Dal-Pizzol F, Schröder N (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21:2521–2528

    Article  PubMed  Google Scholar 

  • Deacon RM (2013) Measuring motor coordination in mice. J Vis Exp 75:2609

    Google Scholar 

  • Devasagayam TP, Tarachand U (1987) Decreased lipid peroxidation in rat kidney during gestation. Biochem Biophys Res Commun 145:134–138

    Article  CAS  PubMed  Google Scholar 

  • Dharmalingam P, Kulasekaran G, Ganapasam S (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. NeuroMolecular Med 15:192–208

    Article  Google Scholar 

  • Drechsel DA, Est’evez AG, Barbeito L, Beckman JS (2012) Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotox Res 22:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological defects in rats and mice. J Am Pharmaceutical Assoc; Scientific Edition XIVI:208–209

  • Ellman GL, Courtney D, Jr Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fan CH, Ting CY, Lin HJ, Wang CH, Liu HL, Yen TC, Yeh CK (2013) SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials 34:3706–3715

    Article  CAS  PubMed  Google Scholar 

  • Federica Ma. Antonella P, Anna C, Franca C, Giuseppina DG, Sara C, Stefania R, Dario F, Letterio SP, Francesca C, Ottavio C, Fabio G, Sonia L (2015) A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits. Neurobiol Dis 81:119–133

    Article  Google Scholar 

  • Fiset C, Rioux FM, Surette ME, Fiset S (2015) Prenatal iron deficiency in guinea pigs increases locomotor activity but does not influence learning and memory. PLoS One 10:0133168

    Google Scholar 

  • Frechou M, Beray-Berthat V, Raynaud JS, Meriaux S, Gombert F, Lancelot E, Plotkine M, Marchand-Leroux C, Ballet S, Robert P, Louin G, Margaill I (2013) Detection of vascular cell adhesion molecule-1 expression with USPIO enhanced molecular MRI in a mouse model of cerebral ischemia. Contrast Media Mol Imaging 8:157–164

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson A, Schroder N, Eriksson P, Izquierdo I, Archer T (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159:25–30

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson A, Schroder N, Eriksson P, Izquierdo I, Archer T (2000) Maze learning and motor activity deficits in adult mice induced by iron exposure during a critical postnatal period. Brain Res Dev 119:65–74

    Article  CAS  Google Scholar 

  • Fretham SJ, Carlson ES, Georgieff MK (2011) The role of iron in learning and memory. Adv Nutr 2:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frings M, Boenisch R, Gerwig M, Diener HC, Timmann D (2004) Learning of sensory sequences in cerebellar patients. Learn Mem 11:347–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction. Ann Neurol 32:10–15

    Article  Google Scholar 

  • Haseeb AK, Abdullah SA, Samia HS, Syed SH, Zohair AA, Adnan AK, Abdulrahman AM (2013) Serum markers of tissue damage and oxidative stress in patients with acute myocardial infarction. Biomed Res 24:15–20

    Google Scholar 

  • Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J, Dobson J (2007) Preliminary observation of elevated levels of nanocrystalline iron oxide in the basal ganglia of neuroferritinopathy patients. Biochim Biophys Acta 1:21–25

    Article  Google Scholar 

  • Jain KK (2009) Cell therapy for CNS trauma. Mol Biotechnol 42:367–376

    Article  CAS  PubMed  Google Scholar 

  • Joseph R, Prohaska AAG (2005) Rat brain iron concentration is lower following perinatal copper deficiency. J Neurochem 93:698–705

    Article  Google Scholar 

  • Jung-Jin H, So-Young C, Jae-Young K (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly (ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902

    Article  Google Scholar 

  • Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    CAS  PubMed  Google Scholar 

  • Korfias S, Papadimitriou A, Stranjalis G, Bakoula C, Daskalakis G, Antsaklis A, Sakas DE (2009) Serum biochemical markers of brain injury. Mini Rev Med Chem 9:227–234

    Article  CAS  PubMed  Google Scholar 

  • Kovacic P, Somanathan R (2013) Nanoparticles: toxicity, radicals, electron transfer, and antioxidants. Methods Mol Biol 1028:15–35

    Article  CAS  PubMed  Google Scholar 

  • Lekawanvijit S, Chattipakorn N (2009) Iron overload thalassemic cardiomyopathy: iron status assessment and mechanisms of mechanical and electrical disturbance due to iron toxicity. Can J Cardiol 25:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  CAS  PubMed  Google Scholar 

  • Linas R, Lang EJ, Welsh JP (1997) The cerebellum, LTD and memory: alternative views. Learn Mem 3:444–445

    Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Manaenko A, Chen H, Kammer J, Zhang JH, Tang J (2011) Comparison Evans blue injection routes: intravenous vs. intraperitoneal, for measurement of blood-brain barrier in a mice hemorrhage model. J Neurosci Methods 195:206–210

    Article  PubMed  Google Scholar 

  • Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012) Intraperitoneal injection of magnetic Fe3O4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine 7:4809–4818

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • McCullough B, Kolokythas O, Maki J, Green D (2012) Ferumoxytol in clinical practice: implications for MRI. J Magn Reson Imaging 36:1476–1479

    Google Scholar 

  • Megraw RE (1971) Reaction of reduced nicotinamide adenine dinucleotide with 2,4-dinitrophenylhydrazine in serum lactate dehydrogenase assays. Am J Clin Pathol 56:225–226

    Article  CAS  PubMed  Google Scholar 

  • Micaela G, Hadas S, Noa MC, Shlomo M, Edward AS (2013) Age-dependent effects of microglial inhibition in vivo on Alzheimer’s disease neuropathology using bioactive conjugated iron oxide nanoparticles. J Nanobiotech 11:32–44

    Article  Google Scholar 

  • Miwa CP, de Lima MN, Scalco F, Vedana G, Mattos R, Fernandez LL, Hilbig A, Schröder N, Vianna MR (2011) Neonatal iron treatment increases apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox Res 19:527–535

    Article  CAS  PubMed  Google Scholar 

  • Movasaghi Z, Rehman S, Rehman I (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  • Papandreoua MA, Tsachaki M, Efthimiopoulos S, Cordopatisc P, Lamaric FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Rese 219:197–204

    Article  Google Scholar 

  • Paul V, Ekambaram P, Jayakumar AR (1998) Effects of sodium fluoride on locomotor behaviour and a few biochemical parameters in rats. Env Toxicol Pharmacol 6:187–191

  • Perez VP, De Lima MN, Da Silva RS, Dornelles AS, Vedana G, Bogo MR, Bonan CD, Schröder N (2010) Iron leads to memory impairment that is associated with a decrease in acetylcholinesterase pathways. Curr Neurovasc Res 7:15–22

    Article  CAS  PubMed  Google Scholar 

  • Prina-Mello A, Crosbie-Staunton K, Salas G, Morales MP, Volkov Y (2013) Multiparametric toxicity evaluation of SPIONs by high content screening technique: identification of biocompatible multifunctional nanoparticles for nanomedicine. IEEE Trans Magn 49:377–382

    Article  Google Scholar 

  • Rahmat AK, Muhammad RK, Sumaira S (2012) Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper. Behav Brain Funct 8:8–21

    Article  Google Scholar 

  • Rinne JO, Kaasinen V, Järvenpää T, Någren K, Roivainen A, Yu M, Oikonen V, Kurki T (2003) Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:113–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudi DH, Peter PDD (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  Google Scholar 

  • Schipper HM (2012) Neurodegeneration with brain iron accumulation-clinical syndromes and neuroimaging. Biochim Biophys Acta 1822:350–360

    Article  CAS  PubMed  Google Scholar 

  • Schroder N, Fredriksson A, Vianna MR, Roesler R, Izquierdo I, Archer T (2011) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124:77–85

    Article  Google Scholar 

  • Shahidi S, Komaki A, Mahmoodi M, Atrvash N, Ghodrati M (2008) Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res Bull 76:109–113

    Article  CAS  PubMed  Google Scholar 

  • Sripetchwandee J, Pipatpiboon N, Chattipakorn N, Chattipakorn S (2014) Combined therapy of iron chelator and antioxidant tcompletely restores brain dysfunction induced by iron toxicity. PLoS One 9:85115

    Article  Google Scholar 

  • Stephane LB, Umar I, James NR, Michael AA, Kanji N (2008) Perinatal iron deficiency affects locomotor behavior and water maze performance in adult male and female rats. J Nutr 138:931–937

    Google Scholar 

  • Sundarraj K, Manickam V, Raghunath A, Periyasamy M, Viswanathan MP, Perumal E (2017a) Repeated exposure to iron oxide nanoparticles causes testicular toxicity in mice. Environ Toxicol 32(2):594–608

    Article  CAS  PubMed  Google Scholar 

  • Sundarraj K, Raghunath A, Panneerselvam L, Perumal E (2017b) Iron oxide nanoparticles modulate heat shock proteins and organ specific markers in mice male accessory organs. Toxicol Appl Pharmacol 317:12–24

    Article  CAS  PubMed  Google Scholar 

  • Svitlana GD, Maria COR, Diana GH, Naoki T, Aric FD, Sean MB, Jerry VA, Mibel P, Andrew W, Hiroto I, Kazutaka S, Edward H, Dunham RS, Yuji K, Cesario VB (2013) Blood-brain barrier alterations provide evidence of subacute diaschisis in an ischemic stroke rat model. PLoS One 8:53–68

    Google Scholar 

  • Thach WT (1996) On the specific role of cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav Brain Sci 19:411–431

    Article  Google Scholar 

  • Thompson KJ, Shoham S, Connor JR (2011) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164

    Article  Google Scholar 

  • Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H (2008) N-acetylcholinesterase-induced apoptosis in Alzheimer’s disease. PLoS One 3:108

    Article  Google Scholar 

  • Varallyay CG, Nesbit E, Fu R, Gahramanov S, Moloney B, Earl E, Muldoon LL, Li X, Rooney WD, Neuwelt EA (2013) High-resolution steady-state cerebral blood volume maps in patients with central nervous system neoplasms using ferumoxytol, a superparamagnetic iron oxide nanoparticle. J Cereb Blood Flow Metab 33:780–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadghiri Y, Li J, Wang J, Hoang D, Sun Y, Xu H, Tsui W, Li Y, Boutajangout A, Wang A, de Leon M, Wisniewski T (2013) Detection of amyloid plaques targeted by bifunctional USPIO in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. PLoS One 8:57097

    Article  Google Scholar 

  • Wang B, Feng W, Zhu M, Wang Y, Wang M, Gu Y, Ouyang H, Wang H, Li M, Zhao Y, Chai Z, Wang H (2009) Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res 11:41–53

    Article  Google Scholar 

  • Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN, Wang HF, Wang J (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–243

    Article  CAS  PubMed  Google Scholar 

  • Wenk GL (2004) Assessment of spatial memory using the radial arm maze and Morris water maze. Current Protocols in Neuroscience 26:8.5A:8.5A.1–8.5A8.5A.12

    Google Scholar 

  • Williamson SM, Moffat C, Gomersall MA, Saranzewa N, Connolly CN, Wright GA (2013) Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Front Physiol 4:1–10

    Article  Google Scholar 

  • Winer J, Kim P, Law M, Liu C, Apuzzo M (2011) Visualizing the future: enhancing neuroimaging with nanotechnology. World Neurosurg 75:626–637

    Article  PubMed  Google Scholar 

  • Winer JL, Liu CY, Apuzzo ML (2012) The use of nanoparticles as contrast media in neuroimaging: a statement on toxicity. World Neurosurg 78:709–711

    Article  PubMed  Google Scholar 

  • Won SM, Lee JH, Park UJ, Gwag J, Gwag BJ (2011) Iron mediates endothelial cell damage and blood-brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Exp Mol Med 43:121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin F, Jiang L, Liu X, Geng C, Wang W, Zhong L, Yang G, Chen M (2014) Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutat Res Genet Toxicol Environ Mutagen 769:29–33

    Article  CAS  PubMed  Google Scholar 

  • Yehuda S, Youdim ME, Mostofsky DI (1986) Brain iron-deficiency causes reduced learning capacity in rats. Pharmacol Biochem Behav 25:141–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grants Commission—Special Assistance Programme (UGC-SAP-II:F-3-20/2013) and Department of Science and Technology, Fund for Improvement of S&T infrastructure in universities and higher educational institutions (DST-FIST:SR/FST/LSI-618/2014), New Delhi, India. Vijayprakash Manickam acknowledges the UGC-BSR fellowship (UGC-BSR-No.F.7-25/2007) funded by UGC-BSR, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Perumal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Additional information

Vasanth Dhakshinamoorthy and Vijayprakash Manickam have equally contributed to this research work.

Electronic Supplementary Material

ESM 1

(DOCX 522 kb)

ESM 2

(DOCX 330 kb)

ESM 3

(DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhakshinamoorthy, V., Manickam, V. & Perumal, E. Neurobehavioural Toxicity of Iron Oxide Nanoparticles in Mice. Neurotox Res 32, 187–203 (2017). https://doi.org/10.1007/s12640-017-9721-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9721-1

Keywords

Navigation