Advertisement

Neurotoxicity Research

, Volume 32, Issue 1, pp 17–26 | Cite as

Correlations of Kynurenic Acid, 3-Hydroxykynurenine, sIL-2R, IFN-α, and IL-4 with Clinical Symptoms During Acute Relapse of Schizophrenia

  • Kinga Szymona
  • Barbara Zdzisińska
  • Hanna Karakuła-Juchnowicz
  • Tomasz Kocki
  • Martyna Kandefer-Szerszeń
  • Marta Flis
  • Wojciech Rosa
  • Ewa M. UrbańskaEmail author
CLINICAL RESEARCH REPORT

Abstract

Several lines of evidence suggest that up-regulation of immune response and alterations of kynurenine pathway function are involved in pathogenesis of schizophrenia. Correlations among clinical status (using PANNS, SANS and SAPS scales) and blood levels of kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and levels of selected immunoactive molecules, soluble interleukin-2 receptor (sIL-2R), interferon-α (IFN-α) and IL-4 were analyzed in 51 chronic schizophrenia patients during acute relapse, after four weeks of therapy and at remission. KYNA levels were significantly lower in comparison with controls (N=45) throughout the study, whereas 3-HK did not differ from controls at admission and during therapy, but increased at remission. The KYNA/3-HK ratio and IL-4 levels, but not sIL-2R and IFN-α levels, were consistently decreased in schizophrenia patients at all analyzed time points. KYNA level and KYNA/3-HK ratio measured at admission correlated negatively with the duration of illness, whereas 3-HK level correlated negatively with the improvement of SANS score at discharge. sIL-2R level before treatment was positively linked with number of relapses. In the subgroup of patients with poor response to pharmacotherapy, treated with clozapine later on, initial KYNA level and the ratio KYNA/3-HK correlated negatively with number of relapses. Positive association of sIL-2R level with number of relapses was also evident in this subgroup. Furthermore, among these patients, starting IFN-α level was negatively linked with the improvement of total PANSS score at discharge. Presented here data support the concept of disturbed kynurenine pathway function in schizophrenia and suggest that assessment of KYNA and 3-HK levels during acute relapse might be useful in prediction of response to antipsychotic therapy. Deficit of peripheral KYNA and higher 3-HK levels could be associated with more severe symptoms of schizophrenia. Further studies with larger samples size are needed to validate our results.

Keywords

Psychoses Kynurenines Immune response Cytokines Positive and negative symptoms 

Notes

Acknowledgements

This study was supported by grants from Medical University in Lublin, DS 450/14, DS 450/15, DS 450/16, DS 192/14, and DS 192/15.

References

  1. Anderson G, Maes M (2013) TRYCAT pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry 42:5–19CrossRefGoogle Scholar
  2. Archer T, Ricci S, Garcia D, Ricciardi MR (2014) Neurodegenerative aspects in vulnerability to schizophrenia spectrum disorders. Neurotox Res 26(4):400–413CrossRefPubMedGoogle Scholar
  3. Barak V, Barak Y, Levine J, Nisman B, Roisman I (1995) Changes in interleukin-1 beta and soluble interleukin-2 receptor levels in CSF and serum of schizophrenic patients. J Basic Clin Physiol Pharmacol 6(1):61–69CrossRefPubMedGoogle Scholar
  4. Barry S, Clarke G, Scully P, Dinan TG (2009) Kynurenine pathway in psychosis: evidence of increased tryptophan degradation. J Psychopharmacol 23(3):287–294CrossRefPubMedGoogle Scholar
  5. Cazzullo CL, Sacchetti E, Galluzzo A, Panariello A, Colombo F, Zagliani A, Clerici M (2001) Cytokine profiles in drug-naive schizophrenic patients. Schizophr Res 47(2–3):293–298CrossRefPubMedGoogle Scholar
  6. Condray R, Dougherty GG, Keshavan MS, Reddy RD, Haas GL, Montrose DM, Matson WR, McEvoy J, Kaddurah-Daouk R, Yao JK (2011) 3-Hydroxykynurenine and clinical symptoms in first-episode neuroleptic-naive patients with schizophrenia. Int J Neuropsychopharmacol 14(6):756–767CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dafny N, Prieto-Gomez B, Dong WQ, Reyes-Vazquez C (1996) Interferon modulates neuronal activity recorded from the hypothalamus, thalamus, hippocampus, amygdala and the somatosensory cortex. Brain Res 734(1–2):269–274CrossRefPubMedGoogle Scholar
  8. Davidson S, Maini MK, Wack A (2015) Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res 35(4):252–264CrossRefGoogle Scholar
  9. Erbağci AB, Herken H, Köylüoglu O, Yilmaz N, Tarakçioglu M (2001) Serum IL-1beta, sIL-2R, IL-6, IL-8 and TNF-alpha in schizophrenic patients, relation with symptomatology and responsiveness to risperidone treatment. Mediat Inflamm 10(3):109–115CrossRefGoogle Scholar
  10. Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom L, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313(1–2):96–98CrossRefPubMedGoogle Scholar
  11. Erhardt S, Schwieler L, Emanuelsson C, Geyer M (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56(4):255–260CrossRefPubMedGoogle Scholar
  12. Fila-Danilow A, Kucia K, Kowalczyk M, Owczarek A, Paul-Samojedny M, Borkowska P, Suchanek R, Kowalski J (2012) Association study of interleukin-4 polymorphisms with paranoid schizophrenia in the Polish population: a critical approach. Mol Biol Rep 39(8):7941–7947CrossRefPubMedGoogle Scholar
  13. Fineberg AM, Ellman LM (2013) Inflammatory cytokines and neurological and neurocognitive alterations in the course of schizophrenia. Biol Psychiatry 73(10):951–966CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gattaz WF, Dalgalarrondo P, Schröder HC (1992) Abnormalities in serum concentrations of interleukin-2, interferon-alpha and interferon-gamma in schizophrenia not detected. Schizophr Res 6(3):237–241CrossRefPubMedGoogle Scholar
  15. Haack M, Hinze-Selch D, Fenzel T, Kraus T, Kühn M, Schuld A, Pollmächer T (1999) Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res 33(5):407–418CrossRefPubMedGoogle Scholar
  16. Heyes MP, Quearry B (1988) Quantification of 3-hydroxykynurenine in brain by high-performance liquid chromatography and electrochemical detection. J Chromatogr B 428:340–344CrossRefGoogle Scholar
  17. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473PubMedGoogle Scholar
  18. Hoyo-Becerra C, Schlaak JF, Hermann DM (2014) Insights from interferon-α-related depression for the pathogenesis of depression associated with inflammation. Brain Behav Immun 42:222–231CrossRefPubMedGoogle Scholar
  19. Johansson AS, Owe-Larsson B, Asp L, Kocki T, Adler M, Hetta J, Gardner R, Lundkvist GB, Urbanska EM, Karlsson H (2013) Activation of kynurenine pathway in ex vivo fibroblasts from patients with bipolar disorder or schizophrenia: cytokine challenge increases production of 3-hydroxykynurenine. J Psychiatr Res 47(11):1815–1823CrossRefPubMedGoogle Scholar
  20. Kamińska T, Wysocka A, Marmurowska-Michalowska H, Dubas-Slemp H, Kandefer-Szerszeń M (2001) Investigation of serum cytokine levels and cytokine production in whole blood cultures of paranoid schizophrenic patients. Arch Immunol Ther Exp 49(6):439–445Google Scholar
  21. Katafuchi T, Take S, Hori T (1995) Roles of cytokines in the neural-immune interactions: modulation of NMDA responses by IFN-alpha. Neurobiology 3(3–4):319–327PubMedGoogle Scholar
  22. Katila H, Cantell K, Hirvonen S, Rimón R (1989) Production of interferon-alpha and gamma by leukocytes from patients with schizophrenia. Schizophr Res 2(4–5):361–365CrossRefPubMedGoogle Scholar
  23. Katila H, Cantell C, Appelberg B, Wahlbeck K, Naukkarinen H, Rimón R (1993) Interferon-alpha as adjuvant treatment in chronic schizophrenia. Neuropsychobiology 28(4):192–196CrossRefPubMedGoogle Scholar
  24. Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, Leonard BE (2004) Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 28(7):1129–1134CrossRefGoogle Scholar
  25. Leucht S, Davis JM, Engel RR, Kissling W, Kane JM (2009) Definitions of response and remission in schizophrenia: recommendations for their use and their presentation. Acta Psychiatr Scand Suppl. (438):7–14. Erratum in: Acta Psychiatr Scand Suppl. 124(1):82Google Scholar
  26. Maes M, Meltzer HY, Bosmans E (1994) Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand 89(5):346–351CrossRefPubMedGoogle Scholar
  27. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671CrossRefPubMedPubMedCentralGoogle Scholar
  28. Müller M, Fontana A, Zbinden G, Gähwiler BH (1993) Effects of interferons and hydrogen peroxide on CA3 pyramidal cells in rat hippocampal slice cultures. Brain Res 13; 619(1–2):157–162CrossRefGoogle Scholar
  29. Müller N, Empl M, Riedel M, Schwarz M, Ackenheil M (1997) Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. Eur Arch Psych Clin Neurosci 247(6):308–313CrossRefGoogle Scholar
  30. Müller N, Weidinger E, Leitner B, Schwarz MJ (2015) The role of inflammation in schizophrenia. Front Neurosci 9:372CrossRefPubMedPubMedCentralGoogle Scholar
  31. Murakami Y, Ishibashi T, Tomita E, Imamura Y, Tashiro T et al (2016) Depressive symptoms as a side effect of interferon-α therapy induced by induction of indoleamine 2,3-dioxygenase. Sci Rep 6:29920CrossRefPubMedPubMedCentralGoogle Scholar
  32. Myint AM (2012) Kynurenines: from the perspective of major psychiatric disorders. FEBS J 279(8):1375–1385CrossRefPubMedGoogle Scholar
  33. Myint AM, Schwarz MJ, Verkerk R, Mueller HH, Zach J, Scharpe S et al (2011) Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naive and medication-free schizophrenic patients. Brain Behav Immun 25:1576–1581CrossRefPubMedGoogle Scholar
  34. Noto C, Ota VK, Gouvea ES, Rizzo LB, Spindola LM, Honda PH, Cordeiro Q, Belangero SI, Bressan RA, Gadelha A, Maes M, Brietzke E (2014) Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int J Neuropsychopharmacol 18(4):pyu042CrossRefPubMedGoogle Scholar
  35. O’Brien SM, Scully P, Dinan TG (2008) Increased tumor necrosis factor-alpha concentrations with interleukin-4 concentrations in exacerbations of schizophrenia. Psychiatry Res 160(3):256–262CrossRefPubMedGoogle Scholar
  36. Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118(1):75–85CrossRefPubMedGoogle Scholar
  37. Oxenkrug G, van der Hart M, Roeser J, Summergrad P (2016) Anthranilic acid: a potential biomarker and treatment target for schizophrenia. Ann Psychiatry Ment Health 4(2):1059PubMedPubMedCentralGoogle Scholar
  38. Park KW, Baik HH, Jin BK (2008) Interleukin-4-induced oxidative stress via microglial NADPH oxidase contributes to the death of hippocampal neurons in vivo. Curr. Aging Sci 1:192–201CrossRefPubMedGoogle Scholar
  39. Plitman E, Nakajima S, de la Fuente-Sandoval C, Gerretsen P, Chakravarty MM, Kobylianskii J, Chung JK, Caravaggio F, Iwata Y, Remington G, Graff-Guerrero A (2014) Glutamate-mediated excitotoxicity in schizophrenia: a review. Eur Neuropsychopharmacol 24(10):1591–1605CrossRefPubMedPubMedCentralGoogle Scholar
  40. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63(8):801–808CrossRefPubMedGoogle Scholar
  41. Schwarcz R, Rassoulpour A, Wu H-Q, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50(7):521–530CrossRefPubMedGoogle Scholar
  42. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477CrossRefPubMedPubMedCentralGoogle Scholar
  43. Schwarz MJ, Krönig H, Riedel M, Dehning S, Douhet A, Spellmann I, Ackenheil M, Möller HJ, Müller N (2006) IL-2 and IL-4 polymorphisms as candidate genes in schizophrenia. Eur Arch Psychiatry Clin Neurosci 256(2):72–76CrossRefPubMedGoogle Scholar
  44. Szalardy L, Zadori D, Toldi J, Fulop F, Klivenyi P, Vecsei L (2012) Manipulating kynurenic acid levels in the brain—on the edge between neuroprotection and cognitive dysfunction. Current Topics in Med Chem 12(16):1797–1806CrossRefGoogle Scholar
  45. Tourjman V, Kouassi E, Koue ME, Rocchetti M, Fortin-Fournier S, Fusar-Poli P, Potvin S (2013) Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 151(1–3):43–47CrossRefPubMedGoogle Scholar
  46. Turski WA, Gramsbergen JB, Traitler H, Schwarcz R (1989) Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine. J Neurochem 52(5):1629–1636CrossRefPubMedGoogle Scholar
  47. Upthegrove R, Manzanares-Teson N, Barnes NM (2014) Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res 155(1–3):101–108CrossRefPubMedGoogle Scholar
  48. Urbanska EM, Kocki T, Saran T, Kleinrok Z, Turski WA (1997) Impairment of brain kynurenic acid production by glutamate metabotropic receptor agonists. Neuroreport 8:3501–3505CrossRefPubMedGoogle Scholar
  49. Urbanska EM, Chmiel-Perzyńska I, Perzyński A, Derkacz M, Owe-Larsson B (2014) Endogenous kynurenic acid and neurotoxicity. In: Kostrzewa R (ed) Handbook of neurotoxicity, 1st edn. Springer, New Jork, pp 421–453Google Scholar
  50. Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H (1996) Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 246(5):279–284CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kinga Szymona
    • 1
  • Barbara Zdzisińska
    • 2
  • Hanna Karakuła-Juchnowicz
    • 1
  • Tomasz Kocki
    • 3
  • Martyna Kandefer-Szerszeń
    • 2
  • Marta Flis
    • 1
  • Wojciech Rosa
    • 4
  • Ewa M. Urbańska
    • 5
    Email author
  1. 1.Department of Psychiatry, Psychotherapy and Early InterventionMedical UniversityLublinPoland
  2. 2.Department of Virology and ImmunologyMaria Curie-Skłodowska UniversityLublinPoland
  3. 3.Department of Experimental and Clinical PharmacologyMedical UniversityLublinPoland
  4. 4.Department of Applied MathematicsLublin University of TechnologyLublinPoland
  5. 5.Laboratory of Cellular and Molecular Pharmacology, Department of Experimental and Clinical PharmacologyMedical UniversityLublinPoland

Personalised recommendations