Skip to main content
Log in

Aluminum Exposure at Human Dietary Levels for 60 Days Reaches a Threshold Sufficient to Promote Memory Impairment in Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) is a significant environmental contaminant. While a good deal of research has been conducted on the acute neurotoxic effects of Al, little is known about the effects of longer-term exposure at human dietary Al levels. Therefore, the purpose of this study was to investigate the effects of 60-day Al exposure at low doses for comparison with a model of exposure known to produce neurotoxicity in rats. Three-month-old male Wistar rats were divided into two major groups: (1) low aluminum levels, and (2) a high aluminum level. Group 1 rats were treated orally by drinking water for 60 days as follows: (a) control—received ultrapure drinking water; (b) aluminum at 1.5 mg/kg b.w., and (c) aluminum at 8.3 mg/kg b.w. Group 2 rats were treated through oral gavages for 42 days as follows: (a) control—received ultrapure water; (b) aluminum at 100 mg/kg b.w. We analyzed cognitive parameters, biomarkers of oxidative stress and acetylcholinesterase (AChE) activity in hippocampus and prefrontal cortex. Al treatment even at low doses promoted recognition memory impairment seen in object recognition memory testing. Moreover, Al increased hippocampal reactive oxygen species and lipid peroxidation, reduced antioxidant capacity, and decreased AChE activity. Our data demonstrate that 60-day subchronic exposure to low doses of Al from feed and added to the water, which reflect human dietary Al intake, reaches a threshold sufficient to promote memory impairment and neurotoxicity. The elevation of oxidative stress and cholinergic dysfunction highlight pathways of toxic actions for this metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP± mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959

    Article  CAS  PubMed  Google Scholar 

  • Andrási E, Páli N, Molnár Z, Kösel S (2005) Brain aluminum, magnesium and phosphorus contents of control and Alzheimer-diseased patients. J Alzheimers Dis 7(4):273–284

    PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Zhao Y, Hill JM, Culicchia F, Kruck TP, Percy ME, Pogue AI, Walton JR, Lukiw WJ (2013) Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD). J Inorg Biochem 126:35–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy SC (2015) Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology 52:222–229

    Article  PubMed  Google Scholar 

  • Bonini JS, Bevilaqua LR, Zinn CG, Kerr DS, Medina JH, Izquierdo I et al (2006) Angiotensin II disrupts inhibitory avoidance memory retrieval. Horm Behav 50:308–313

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 10(9):124. doi:10.3389/fncel.2015.00124

    Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Erfani S, Khaksari M, Oryan S, Shamsaei N, Aboutaleb N, Nikbakht F, Jamali-Raeufy N, Gorjipour F (2015) Visfatin reduces hippocampal CA1 cells death and improves learning and memory deficits after transient global ischemia/reperfusion. Neuropeptides 49:63–68. doi:10.1016/j.npep.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  • Everitt AV (1991) Ageing rat colonies at the University of Sydney. Proc Aust Assoc Gerontol 26:79–82

    Google Scholar 

  • Exley C (2004) The pro-oxidant activity of aluminum. Free Radic Biol Med 3:380–387

    Article  Google Scholar 

  • Exley C (2012) Elucidating aluminium´s exposome. Curr Inorg Chem 2:3–7

    Article  CAS  Google Scholar 

  • Exley C (2013) Human exposure to aluminium. Environ Sci Process Impacts 10:1807–1816

    Article  Google Scholar 

  • Flaten TP (2001) Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull 2:187–196

    Article  Google Scholar 

  • Fraser DD, MacVicar BA (1996) Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J Neurosci 16:4113–4128

    CAS  PubMed  Google Scholar 

  • Greger JL (1993) Aluminum metabolism. Annu Rev Nutr 13:42–63

    Article  Google Scholar 

  • House E, Esiri M, Forster G, Ince PG, Exley C (2012) Aluminium, iron and copper in human brain tissues donated to the medical research council’s cognitive function and ageing study. Metallomics 4:56–65

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    Article  CAS  PubMed  Google Scholar 

  • Jacob JJ, Tremblay EC, Colombel MC (1974) Enhancement of nociceptive reactions by naloxone in mice and rats. Psychopharmacologia 37:217–223

    Article  CAS  PubMed  Google Scholar 

  • Kasbe P, Jangra A, Lahkar M (2015) Mangiferin ameliorates aluminium chloride-induced cognitive dysfunction via alleviation of hippocampal oxido-nitrosative stress, proinflammatory cytokines and acetylcholinesterase level. J Trace Elem Med Biol 31:107–112

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (1999) Aluminium-induced biphasic effect. Med Hypotheses 52:557–559

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi BV, Sudhakar M, Prakash KS (2015) Protective effect of selenium against aluminum chloride-induced Alzheimer’s disease: behavioral and biochemical alterations in rats. Biol Trace Elem Res 1:67–74

    Article  Google Scholar 

  • Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J, Mankhetkorn S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Rad Phys Chem 72:323–331

    Article  CAS  Google Scholar 

  • Mello-Carpes PB, Izquierdo I (2013) The nucleus of the solitary tract → nucleus paragigantocellularis → locus coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem 100:56–63

    Article  CAS  PubMed  Google Scholar 

  • Noremberg S, Bohrer D, Schetinger MR, Bairros AV, Gutierres J, Gonçalves JF et al (2016) Silicon reverses lipid peroxidation but not acetylcholinesterase activity induced by long-term exposure to low aluminum levels in rat brain regions. Biol Trace Elem Res 1:77–85

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Kumar A (2009) Effect of N-acetyl cysteine against aluminium-induced cognitive dysfunction and oxidative damage in rats. Basic Clin Pharmacol Toxicol 2:98–104

    Article  Google Scholar 

  • Prakash A, Kumar A (2013) Mitoprotective effect of Centella asiatica against aluminum-induced neurotoxicity in rats: possible relevance to its anti-oxidant and anti-apoptosis mechanism. Neurol Sci 8:1403–1409

    Article  Google Scholar 

  • Priest ND, Talbot RJ, Newton D, Day JP, King SJ, Fifield LK (1998) Uptake by man of aluminium in a public water supply. Hum Exp Toxicol 6:296–301

    Article  Google Scholar 

  • Ravi SM, Prabhu BM, Raju TR, Bindu PN (2000) Long-term effects of postnatal aluminium exposure on acetylcholinesterase activity and biogenic amine neurotransmitters in rat brain. Indian J Physiol Pharmacol 4:473–478

    Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 3:659–661

    Google Scholar 

  • Reinke CM, Breitkreutz J, Leuenberger H (2003) Aluminium in over-the-counter drugs: risks outweigh benefits? Drug Saf 14:1011–1025

    Article  Google Scholar 

  • Roskams AJ, Connor JR (1990) Aluminum access to the brain: a role for transferrin and its receptor. Proc Natl Acad Sci 87:9024–9027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruipérez F, Mujika JI, Ugalde JM, Exley C, Lopez X (2012) Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). J Inorg Biochem 117:118–123

    Article  PubMed  Google Scholar 

  • Rusina R, Matěj R, Kašparová L, Kukal J, Urban P (2011) Higher aluminum concentration in Alzheimer’s disease after box-cox data transformation. Neurotox Res 4:329–333

    Article  Google Scholar 

  • Shaw CA, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 2–3:304–316

    Article  Google Scholar 

  • Shirley DG, Lote CJ (2005) Renal handling of aluminium. Nephron Physiol 101:99–103

    Article  Google Scholar 

  • Walton JR (2007) A longitudinal study of rats chronically exposed to aluminum at human dietary levels. Neurosci Lett 1:29–33

    Article  Google Scholar 

  • Walton JR (2009) Functional impairment in aged rats chronically exposed to human range dietary aluminum equivalents. Neurotoxicology 30:182–193

    Article  CAS  PubMed  Google Scholar 

  • Walton JR (2014) Chronic aluminum intake causes Alzheimer’s disease: applying Sir Austin Bradford Hill’s causality criteria. J Alzheimers Dis 4:765–838. doi:10.3233/JAD-132204

    Google Scholar 

  • Wang Z, Wei X, Yang J, Suo J, Chen J, Liu X, Zhao X (2016) Chronic exposure to aluminum and risk of Alzheimer’s disease: a meta-analysis. Neurosci Lett 610:200–206

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2007) Safety evaluation of certain food additives and contaminants. Food Additive Series: 58. http://whqlibdoc.who.int/trs/WHO TRS 940 eng.pdf

  • Yellamma K, Saraswathamma S, Nirmala Kumari B (2010) Cholinergic system under aluminium toxicity in rat brain. Toxicol Int 2:106–112

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Programa Nacional de Cooperação Acadêmica; Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq 406715/2013-0]; Fundação de Amparo a Pesquisa do Espírito Santo; Fundo Estadual de Ciência e Tecnologia [39767531/07]; and Pró-reitoria de Pesquisa - Universidade Federal do Pampa [Nº 10.134.14]. The authors would like to thank Professor Christopher Exley from Keele University, Staffordshire, UK, for the support on GFAAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caroline S. Martinez or Giulia A. Wiggers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, C.S., Alterman, C.D.C., Peçanha, F.M. et al. Aluminum Exposure at Human Dietary Levels for 60 Days Reaches a Threshold Sufficient to Promote Memory Impairment in Rats. Neurotox Res 31, 20–30 (2017). https://doi.org/10.1007/s12640-016-9656-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9656-y

Keywords

Navigation