Neurotoxicity Research

, Volume 30, Issue 3, pp 434–452 | Cite as

The Fas Ligand/Fas Death Receptor Pathways Contribute to Propofol-Induced Apoptosis and Neuroinflammation in the Brain of Neonatal Rats

  • Desanka MilanovicEmail author
  • Vesna Pesic
  • Natasa Loncarevic-Vasiljkovic
  • Zeljko Pavkovic
  • Jelena Popic
  • Selma Kanazir
  • Vesna Jevtovic-Todorovic
  • Sabera Ruzdijic
Original Article


A number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain. Propofol (20 mg/kg) was administered to 7-day-old rats in multiple doses sufficient to maintain 2-, 4- and 6-h duration of anesthesia. Animals were sacrificed at 0, 4, 16 and 24 h after termination of anesthesia. It was found that propofol anesthesia induced Fas/FasL and downstream caspase-8 expression more prominently in the thalamus than in the cortex. Opposite, Bcl-2 and caspase-9, markers of intrinsic pathway activation, were shown to be more influenced by propofol treatment in the cortex. Further, we have established upregulation of caspase-1 and IL-1β cytokine transcription as well as subsequent activation of microglia that is potentially associated with brain inflammation. Behavioral analyses revealed that P35 and P60 animals, neonatally exposed to propofol, had significantly higher motor activity during three consecutive days of testing in the open field, though formation of the intersession habituation was not prevented. This data, together with our previous results, contributes to elucidation of complex mechanisms of propofol toxicity in developing brain.


Propofol toxicity FasL/Fas receptor Bcl-2 gene family Caspasa-1 IL-1β cytokine Microglia activation 



This work was supported by the Grant ON173056 from the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Compliance with ethical standards

Conflict of interest

No conflict of interest to declare.

Supplementary material

12640_2016_9629_MOESM1_ESM.tif (1.1 mb)
Supplementary Figure 1. Time-dependent changes of Bcl-xL, Bax and Bad mRNA expression in the cortex (A) and the thalamus (B) of P7 rats after propofol anesthesia were examined by using semi-quantitative RT-PCR. The results are presented for animals at different recovery time points (0, 4, 16, and 24 hr) after exposure to propofol anesthesia for 2, 4, and 6 hr. Histograms represent mRNA levels expressed as the fold change relative to the control value (100%) obtained from three separate experiments. The results are mean ±SEM. *P<0.05 vs. the control value, presented as a black line; #P<0.05 between treatments. (TIF 1,156 kb)


  1. Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22:207–220PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322:876–880PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH (2000) Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37:167–169PubMedCrossRefGoogle Scholar
  4. Beer R, Franz G, Krajewski S, Pike BR, Hayes RL, Reed JC, Wang KK, Klimmer C, Schmutzhard E, Poewe W, Kampfl A (2001) Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury. J Neurochem 78:862–873PubMedCrossRefGoogle Scholar
  5. Bercker S, Bert B, Bittigau P, Felderhoff-Müser U, Bührer C, Ikonomidou C, Weise M, Kaisers UX, Kerner T (2009) Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox Res 16:140–147PubMedCrossRefGoogle Scholar
  6. Bolivar VJ (2009) Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis. Neurobiol Learn Mem 92(2):206–214PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, Dissen GA, Creeley CE, Olney JW (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cao L, Li L, Lin D, Zuo (2012) Isoflurane induces learning impairment that is mediated by interleukin 1beta in rodents. PLoS One 7(12):e51431. doi: 10.1371/journal.pone.0051431 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Brain Res Rev 44:65–81PubMedCrossRefGoogle Scholar
  10. Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH (1999) Increases in bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 8:813–821Google Scholar
  11. Denes A, Lopez-Castejon G, Brough D (2012) Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis 3:e338. doi: 10.1038/cddis.2012.86 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dobbing J, Sands J (1979) The brain growth spurt in various mammalian species. Early Hum Dev 3:79–84PubMedCrossRefGoogle Scholar
  13. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fan W, Zhu X, Wu L, Wu Z, Li D, Huang F, He H (2015) Propofol:an anesthetic possessing neuroprotective effects. Eur Rev Med Pharmacol Sci 19:1520–1529PubMedGoogle Scholar
  15. Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14:400–410PubMedCrossRefGoogle Scholar
  16. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-XL. J Biol Chem 274:2225–2233PubMedCrossRefGoogle Scholar
  17. Fredriksson A, Ponten E, Gordh T, Eriksson P (2007) Neonatal exposure to a combination of N-methyl-d-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology 107:427–436PubMedCrossRefGoogle Scholar
  18. Friedlander RM (2000) Role of caspase 1 in neurologic disease. Arch Neurol 57:1273–1276PubMedGoogle Scholar
  19. Garden GA, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137PubMedCrossRefGoogle Scholar
  20. Gemma C, Fister M, Hudson C, Bickford PC (2005) Improvement of memory for context by inhibition of caspase-1 in aged rats. Eur J Neurosci 22:1751–1756PubMedCrossRefGoogle Scholar
  21. Han D, Jin J, Fang H, Xu G (2015) long-term action of propofol on cognitive function and hippocampal neuroapoptosis in neonatal rats. Int J Clin Exp Med 8(7):10696–10704PubMedPubMedCentralGoogle Scholar
  22. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776PubMedCrossRefGoogle Scholar
  23. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V, Turski L, Olney JW (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74PubMedCrossRefGoogle Scholar
  24. Jevtovic-Todorovic V (2010) Developing brain and general anesthesia—is there a cause for concern? Med Rep 2:68. doi: 10.3410/M2-68 Google Scholar
  25. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney J, Wozniak DF (2003) Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci 23:876–882PubMedGoogle Scholar
  26. Karen T, Schlager GW, Bendix I, Sifringer M, Herrmann R, Pantazis C, Enot D, Keller M, Kerner T, Felderhoff-Mueser U (2013) Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome. PLoS One 8(5):e64489. doi: 10.1371/journal.pone.0064480 CrossRefGoogle Scholar
  27. Kidambi S, Yarmush J, Berdichevsky Y, Kamath S, Fong W, SchianodiCola J (2010) Propofol induces MAPK/ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Res Notes 3:201PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kodama M, Satoh Y, Otsubo Y, Araki Y, Yonamine R, Masui K, Kazama T (2011) Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflurane and sevoflurane and impairs working memory. Anesthesiology 115:979–991PubMedCrossRefGoogle Scholar
  29. Kubo K, Inada T, Shingu K (2011) Possible role of propofol’s cyclooxygenase-inhibiting property in alleviating dopaminergic neuronal loss in the substantia nigra in an MPTP-induced murine model of Parkinson’s disease. Brain Res 1387:125–133PubMedCrossRefGoogle Scholar
  30. Laviola G, Macri S, Morley-Fletcher S, Adriani W (2003) Risk-taking behavior in adolescent mice:psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 27:19–31PubMedCrossRefGoogle Scholar
  31. Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115:2665–2672PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lei X, Guo Q, Zhang J (2012) Mechanistic insights into neurotoxicity induced by anesthetics in the developing brain. Int J Med Sci 13(6):6772–6799Google Scholar
  33. Liu JR, Liu Q, Li J, Baek C, Han XH, Athiraman U, Soriano SG (2012) Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology 117:64–71PubMedCrossRefGoogle Scholar
  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  35. Loepke AW, Soriano SG (2008) An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg 106:1681–1707PubMedCrossRefGoogle Scholar
  36. Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12PubMedCrossRefGoogle Scholar
  37. Milanovic D, Popic J, Pesic V, Loncarevic-Vasiljkovic N, Kanazir S, Jevtovic-Todorovic V, Ruzdijic S (2010) Regional and temporal profiles of calpain and caspase-3 activities in postnatal rat brain following repeated propofol administration. Dev Neurosci 32:288–301PubMedPubMedCentralCrossRefGoogle Scholar
  38. Milanovic D, Pesic V, Popic J, Tanic N, Kanazir S, Jevtovic-Todorovic V, Ruzdijic S (2014) Propofol anesthesia induces proapoptotic tumor necrosis factor-α and pro-nerve growth factor signaling as well as prosurvival Akt and XIAP expression in neonatal rat brain. J Neurosci Res 92:1362–1373PubMedPubMedCentralCrossRefGoogle Scholar
  39. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765PubMedCrossRefGoogle Scholar
  40. Olsen EA, Brambrink AM (2013) Anesthesia for the young child undergoing ambulatory procedures: current concerns regarding harm to the developing brain. Curr Opin Anesthesiol 26:677–684CrossRefGoogle Scholar
  41. Pearn ML, Hu Y, Niesman IR, Patel HH, Drummond JC, Roth DM, Akassoglou K, Patel PM, Head BP (2012) Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology 116:352–361PubMedPubMedCentralCrossRefGoogle Scholar
  42. Perez-Navarro E, Gavaldà N, Gratacòs E, Alberch J (2005) Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. J Neurochem 92:678–691PubMedCrossRefGoogle Scholar
  43. Pesic V, Milanovic D, Tanic N, Popic J, Kanazir S, Jevtovic-Todorovic V, Ruzdijic S (2009) Potential mechanism of cell death in the developing rat brain induced by propofol anesthesia. Int JDev Neurosci 27:279–287CrossRefGoogle Scholar
  44. Pesic V, Milanovic D, Popic J, Smiljanic K, Tesic V, Kanazir S, Jevtovic-Todorovic V, Ruzidijic S (2015) Neonatal propofol anesthesia modifies activity-dependent processes and induces transient hyperlocomotor response to d-amphetamine during adolescence in rats. Int J Devl neuroscience 47:266–277CrossRefGoogle Scholar
  45. Peter ME (2004) The flip side of FLIP. Biochem J 382:e1–e3PubMedPubMedCentralCrossRefGoogle Scholar
  46. Popic J, Pesic V, Milanovic D, Todorovic S, Kanazir S, Jevtovic-Todorovic V, Ruzdijic S (2012) Propofol-induced changes in neurotrophic signaling in the developing nervous system in vivo. PLoS One 7(4):e34396. doi: 10.1371/journal.pone.0034396 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Popic J, Pesic V, Milanovic D, Loncarevic-Vasiljkovic N, Smiljanic K, Kanazir S, Ruzdijic S (2015) Induction of TNF-α signaling cascade in neonatal rat brain during propofol anesthesia. Int J Dev Neurosci 44:22–32PubMedCrossRefGoogle Scholar
  48. Reich A, Spering C, Schulz JB (2008) Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity? Trends Neurosci 31:478–486PubMedCrossRefGoogle Scholar
  49. Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272:26953–26958PubMedCrossRefGoogle Scholar
  50. Servick K (2014) Biomedical Research. Researchers struggle to gauge risks of childhood anesthesia. Science 346:1161–1162PubMedCrossRefGoogle Scholar
  51. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, Sun D, Baxter MG, Zhang Y, Xie Z (2013) Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology 118:502–515PubMedPubMedCentralCrossRefGoogle Scholar
  52. Shravah J, Wang B, Pavlovic M, Kumar U, Chen DDY, Luo H, Ansley DM (2014) Propofol mediates signal transducer and activator of transcription 3 activation and crosstalk with phosphoinositide 3-kinase/AKT. JAKSTAT 3(2):e29554PubMedPubMedCentralGoogle Scholar
  53. Sifringer M, Stefovska V, Endesfelder S, Stahel PF, Genz K, Dzietko M, Ikonomidou C, Felderhoff-Mueser U (2007) Activation of caspase-1 dependent interleukins in developmental brain trauma. Neurobiol Dis 25:614–622PubMedCrossRefGoogle Scholar
  54. Sprung J, Flick R, Katusic S, Colligan RC, Barbaresi WJ, Bojanic K, Welch TL, Olson MD, Hanson AC, Schroeder DR, Wilder RT, Warner DO (2012) Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin Proc 87(2):120–129PubMedPubMedCentralCrossRefGoogle Scholar
  55. Stratmann G, Sall JW, May LDV, Loepke AW, Lee MT (2010) Beyond anesthetic properties: the effects of isoflurane on brain cell death, neurogenesis, and long-term neurocognitive function. Anesth Analg 110(2):431–437CrossRefGoogle Scholar
  56. Strauss KI, Narayan RK, Raghupathi R (2004) Common patterns of Bcl-2 family gene expression in two traumatic brain injury models. Neurotox Res 6:333–342PubMedPubMedCentralCrossRefGoogle Scholar
  57. Streit W, Xue QS, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun. 2014(2):142. doi: 10.1186/s40478-014-0142-6 CrossRefGoogle Scholar
  58. Tanaka T, Kai S, Matsuyama T, Adachi T, Fukuda K, Hirota K (2013) General Anesthetics Inhibit LPS-Induced IL-1β Expression in Glial Cells. PLoS ONE 8(12):e82930. doi: 10.1371/journal.pone.0082930 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144PubMedCrossRefGoogle Scholar
  60. Tsai CJ, Lee CTC, Liang HY, Tsai PJ, Chen VCH, Gossop M (2015) Risk of ADHD after multiple exposures to general anesthesia: a nationwide retrospective cohort study. J Att Dis. doi: 10.1177/1087054715587094 Google Scholar
  61. Villapol S, Acarin L, Faiz M, Castellano B, Gonzalez B (2007) Distinct spatial and temporal activation of caspase pathways in neurons and glial cells after excitotoxic damage to the immature rat brain. J Neurosci Res 85:3545–3556PubMedCrossRefGoogle Scholar
  62. Vutskits L, Davis PJ, Hansen TG (2012) Anesthetics and the developing brain: time for a change in practice? A pro/con debate. Paediatr Anaesth 22(10):973–980PubMedCrossRefGoogle Scholar
  63. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65PubMedCrossRefGoogle Scholar
  64. Wilder RT (2010) Is there any relationship between long-term behavior disturbance and early exposure to anesthesia? Curr opin Anaesthesia 23(3):332–336CrossRefGoogle Scholar
  65. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110(4):796–804PubMedPubMedCentralCrossRefGoogle Scholar
  66. Wu X, Lu Y, Dong Y, Zhang G, Zhang YY, Xu ZP, Culley DJ, Crosby G, Marcantonio ER, Tanzi RE, Xie Z (2012) The inhalation anesthetic isoflurane increases levels of pro-inflammatory TNF-α, IL-6 and IL-1β. Neurobiol Aging 33:1364–1378PubMedCrossRefGoogle Scholar
  67. Yang B, Liang G, Khojasteh S, Wu Z, Yang W, Joseph D, Wei H (2014) Comparison of neurodegeneration and cognitive impairment in neonatal mice exposed to propofol or isoflurane. PLoS One 9(6):e99171. doi: 10.1371/journal.pone.0099171 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ye X, Lian Q, Eckenhoff MF, Eckenhoff RG, Pan JZ (2013) Differential general anesthetic effects on microglial cytokine expression. PLoS One 8(1):e52887. doi: 10.1371/journal.pone.0052887 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815–827PubMedCrossRefGoogle Scholar
  70. Yu D, Jiang Y, Gao J, Liu B, Chen P (2013) Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neurosci Lett 534:41–46PubMedCrossRefGoogle Scholar
  71. Zhang X, Graham SH, Kochanek PM, Marion DW, Nathaniel PD, Watkins SC, Clark SB (2003) Caspase-8 expression and proteolysis in human brain after severe head injury. FASEB J 17:1367–1369PubMedGoogle Scholar
  72. Zhang Y, Zhen Y, Dong Y, Xu Z, Yue Y, Golde TE, Tanzi RE, Moir RD, Xie Z (2011) Anesthetic propofol attenuates the isoflurane-induced caspase-3 activation and Aβ oligomerization. PLoS One 6(11):e27019. doi: 10.1371/journal.pone.0027019 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Zhang Y, Dong Y, Xu Z, Xie Z (2012) Propofol and magnesium attenuate isoflurane-induced caspase-3 activation via inhibiting mitochondrial permeability transition pore. Med Gas Res 2:20PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Desanka Milanovic
    • 1
    Email author
  • Vesna Pesic
    • 1
  • Natasa Loncarevic-Vasiljkovic
    • 1
  • Zeljko Pavkovic
    • 1
  • Jelena Popic
    • 2
  • Selma Kanazir
    • 1
  • Vesna Jevtovic-Todorovic
    • 3
  • Sabera Ruzdijic
    • 1
  1. 1.Institute for Biological Research, Department of NeurobiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Biochemistry and Goodman Cancer Research CentreMcGill UniversityMontrealCanada
  3. 3.Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations