Skip to main content
Log in

Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson’s Disease

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Amantadine is the noncompetitive antagonist of N-methyl-d-aspartate, receptor activated by the excitatory neurotransmitter glutamate. It is the only effective medication used to alleviate dyskinesia induced by l-3,4-dihydroxyphenylalanine (l-DOPA) in Parkinson’s disease patients. Unfortunately, adverse effects as abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia limit its clinical utility. Combined effective symptomatic treatment modalities may lessen the liability to undesirable events. Likewise drugs known to interfere with nitrergic system reduce AIMs in animal models of Parkinson’s disease. We aimed to analyze an interaction between amantadine, neuronal nitric oxide synthase inhibitor (7-nitroindazole, 7NI), and nitric oxide donor (sodium nitroprusside, SNP) in 6-hydroxydopamine-(6-OHDA)-lesioned rats (microinjection in the medial forebrain bundle) presenting l-DOPA-induced dyskinesia (20 mg/kg, gavage, during 21 days). We confirm that 7NI-30 mg/kg, SNP-2/4 mg/kg and amantadine-40 mg/kg, individually reduced AIMs. Our results revealed that co-administration of sub-effective dose of amantadine (10 mg/kg) plus sub-effective dose of 7NI (20 mg/kg) potentiates the effect of reducing AIMs scores when compared to the effect of the drugs individually. No superior benefit on l-DOPA-induced AIMs was observed with the combination of amantadine and SNP. The results revealed that combination of ineffective doses of amantadine and 7NI represents a new strategy to increase antidyskinetic effect in l-DOPA-induced AIMs. It may provide additional therapeutic benefits to Parkinson’s disease patients from these disabling complications at lower and thus safer and more tolerable doses than required when either drug is used alone. To close, we discuss the paradox of both nitric oxide synthase inhibitor and/or donor produced AIMs reduction by targeting nitric oxide synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed I, Bose SK, Pavese N, Ramlackhansingh A, Turkheimer F, Hotton G, Hammers A, Brooks DJ (2011) Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 134(Pt 4):979–986. doi:10.1093/brain/awr028

    Article  PubMed  Google Scholar 

  • Barnum CJ, Eskow KL, Dupre K, Blandino P Jr, Deak T, Bishop C (2008) Exogenous corticosterone reduces L-DOPA-induced dyskinesia in the hemi-parkinsonian rat: role for interleukin-1beta. Neuroscience 156(1):30–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Björklund A, Carta M (2013) Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord 28(8):1088–1096. doi:10.1002/mds.25366

    Article  CAS  PubMed  Google Scholar 

  • Bibbiani F, Oh JD, Kielaite A, Collins MA, Smith C, Chase TN (2005) Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Exp Neurol 196(2):422–429. doi:10.1016/j.expneurol.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  • Blanchet PJ, Konitsiotis S, Chase TN (1998) Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov Disord 13(5):798–802

    Article  CAS  PubMed  Google Scholar 

  • Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25(13):3312–3322. doi:10.1523/JNeurosci.4262-04

    Article  CAS  PubMed  Google Scholar 

  • Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel EA (2015a) Glial activation is associated with L-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387

    Article  CAS  PubMed  Google Scholar 

  • Bortolanza M, Padovan-Neto FE, Cavalcanti-Kiwiatkoski R, Dos Santos-Pereira M, Mitkovski M, Raisman-Vozari R, Del-Bel EA (2015b) Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of Parkinson’s disease induced by L-DOPA? Philos Trans R Soc Lond B Biol Sci 370(1672):20140190

    Article  PubMed  Google Scholar 

  • Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20(8):919–931. doi:10.1002/mds.20612

    Article  PubMed  Google Scholar 

  • Buisson B, Bertrand D (1998) Open-channel blockers at the human alpha4beta2 neuronal nicotinic acetylcholine receptor. Mol Pharmacol 53:555–563

    CAS  PubMed  Google Scholar 

  • Bujas-Bobanovic M, Bird DC, Robertson HA, Dursun SM (2000) Blockade of phencyclidine-induced effects by a nitric oxide donor. Br J Pharmacol 130(5):1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenci MA, Lundblad M (2007) Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci 9:25. doi:10.1002/0471142301.ns0925s41

    PubMed  Google Scholar 

  • Cenci MA, Lee CS, Björklund A (1998) L-DOPA induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706. doi:10.1046/j.1460-9568.1998.00285.x

    Article  CAS  PubMed  Google Scholar 

  • Cenci MA, Ohlin KE, Odin P (2011) Current options and future possibilities for the treatment of dyskinesia and motor fluctuations in Parkinson’s disease. CNS Neurol Disord Drug Targets 10(6):670–684

    Article  CAS  PubMed  Google Scholar 

  • Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274(39):27467–27473

    Article  CAS  PubMed  Google Scholar 

  • Crosby NJ, Deane KH, Clarke CE (2003) Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database Syst Rev 2:CD003467

    PubMed  Google Scholar 

  • Czarnecka A, Lenda T, Domin H, Konieczny J, Smiałowska M, Lorenc-Koci E (2013) Alterations in the expression of nNOS in the substantia nigra and subthalamic nucleus of 6-OHDA-lesioned rats: the effects of chronic treatment with l-DOPA and the nitric oxide donor, molsidomine. Brain Res 1541:92–105

    Article  CAS  PubMed  Google Scholar 

  • Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179(1):76–89. doi:10.1016/j.bbr.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  • Del Bel EA, Guimarães FS, Bermúdez-Echeverry M, Gomes MZ, Schiaveto-de-souza A, Padovan-Neto FE, Tumas V, Barion-Cavalcanti AP, Lazzarini M, Nucci-da-Silva LP, de Paula-Souza D (2005) Role of nitric oxide on motor behavior. Cell Mol Neurobiol 25:371–392

    Article  PubMed  Google Scholar 

  • Del-Bel E, Padovan-Neto FE, Raisman-Vozari R, Lazzarini M (2011) Role of nitric oxide in motor control: implications for Parkinson’s disease pathophysiology and treatment. Curr Pharm Des 17(5):471–488

    Article  CAS  PubMed  Google Scholar 

  • Del-Bel E, Padovan-Neto FE, Szawka RE, da-Silva CA, Raisman-Vozari R, Anselmo-Franci J, Romano-Dutra AC, Guimaraes FS (2014) Counteraction by nitric oxide synthase inhibitor of neurochemical alterations of dopaminergic system in 6-OHDA-lesioned rats under L-DOPA treatment. Neurotox Res 25(1):33–44. doi:10.1007/s12640-013-9406-3

    Article  CAS  PubMed  Google Scholar 

  • Del-Bel E, Padovan-Neto FE, Bortolanza M, Tumas V, Aguiar AS Jr, Raisman-Vozari R, Prediger RD (2015) Nitric oxide, a new player in L-DOPA-induced dyskinesia? Front Biosci (Elite Ed) 7:168–192

    Article  Google Scholar 

  • Feelisch M (1998) The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedeberg’s Arch Pharmacol 358:113–122

    Article  CAS  Google Scholar 

  • Fiorentini C, Busi C, SpanoPierFranco Missale C (2008) Role of receptor heterodimers in the development of l-dopa-induced dyskinesias in the 6-hydroxydopamine rat model of Parkinson’s disease. Parkinsonism Relat Disord 14(2):159–164. doi:10.1016/j.parkreldis.2008.04.022

    Article  Google Scholar 

  • Fisher A, Biggs CS, Starr MS (1998) Differential effects of NMDA and non-NMDA antagonists on the activity of aromatic l-amino acid decarboxylase activity in the nigrostriatal dopamine pathway of the rat. Brain Res 792:126–132

    Article  CAS  PubMed  Google Scholar 

  • Gardoni F, Sgobio C, Pendolino V, Calabresi P, Di Luca M, Picconi B (2012) Targeting GluN2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol Aging 33:2138–2144. doi:10.1016/j.neurobiolaging.2011.06.019

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27(11):2783–2802. doi:10.1111/j.1460-9568.2008.06285.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Giorgi M, D’Angelo V, Esposito Z, Nuccetelli V, Sorge R, Martorana A, Stefani A, Bernardi G, Sancesario G (2008) Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: new aspects in the pathogenetic mechanisms. Eur J Neurosci 28:941–950

    Article  CAS  PubMed  Google Scholar 

  • Gomes MZ, Del-Bel EA (2003) Effects of electrolytic and 6-OHDA lesions of rat nigrostriatal pathway on NO-synthase and NADPH-d. Brain Res Bull 62(2):107–115. doi:10.1016/j.brainresbull.2003.08.010

    Article  CAS  PubMed  Google Scholar 

  • González-Aparicio R, Moratalla R (2014) Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson’s disease. Neurobiol Dis 62:416–425

    Article  PubMed  Google Scholar 

  • Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ (1994) Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 269(34):21644–21649

    CAS  PubMed  Google Scholar 

  • Ho GP, Selvakumar B, Mukai J, Hester LD, Wang Y, Gogos JA, Snyder SH (2011) S-nitrosylation and S-palmitoylation reciprocally regulate synaptic targeting of PSD-95. Neuron 71:131–141. doi:10.1016/j.neuron.2011.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM (2013) The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol Rev 65(1):171–222. doi:10.1124/pr.111.005678

    Article  CAS  PubMed  Google Scholar 

  • Hurley MJ, Jackson MJ, Smith LA, Rose S, Jenner P (2005) Immunoautoradiographic analysis of NMDA receptor subunits and associated postsynaptic density proteins in the brain of dyskinetic MPTP-treated common marmosets. Eur J Neurosci 21(12):3240–3250

    Article  CAS  PubMed  Google Scholar 

  • Iravani MM, Jenner P (2011) Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm 118:1661–1690

    Article  CAS  PubMed  Google Scholar 

  • Jankovic J (2005) Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord 20(11):11–16

    Article  Google Scholar 

  • Jenner P (2008) Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9(9):665–677. doi:10.1038/nrn2471

    Article  CAS  PubMed  Google Scholar 

  • Kalia L, Brotchie JM, Fox SH (2013) Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord 28(2):131–144. doi:10.1002/mds.25273

    Article  CAS  PubMed  Google Scholar 

  • Kiss JP, Vizi ES (2001) Nitric oxide: a novel link between synaptic and nonsynaptic transmission. Trends Neurosci 24:211–215

    Article  CAS  PubMed  Google Scholar 

  • Kopincová J, Púzserová A, Bernátová I (2011) Biochemical aspects of nitric oxide synthase feedback regulation by nitric oxide. Interdiscip Toxicol 4(2):63–68. doi:10.2478/v10102-011-0012-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Shoppmeyer K, Riederer P (1993) Affinity of 1-aminoadamantanes for the sigma binding site in post-mortem human frontal cortex. Neurosci Lett 163(2):129–131

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Cenci MA, Schulzer M, Bjorklund A (2000) Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 123(7):1365–1379. doi:10.1093/brain/123.7.1365

    Article  PubMed  Google Scholar 

  • Li W, Xue J, Niu C, Fu H, Lam CS, Luo J, Chan HH, Xue H, Kan KK, Lee NT, Li C, Pang Y, Li M, Tsim KW, Jiang H, Chen K, Li X, Han Y (2007) Synergistic neuroprotection by bis(7)-tacrine via concurrent blockade of N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase. Mol Pharmacol 71:1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Luginger E, Wenning GK, Bosch S, Poewe W (2000) Beneficial effects of amantadine on L-dopa-induced dyskinesia in Parkinson’s disease. Mov Disord 15(5):873–878

    Article  CAS  PubMed  Google Scholar 

  • Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132. doi:10.1046/j.0953-816x.2001.01843.x

    Article  CAS  PubMed  Google Scholar 

  • Macchio GJ, Ito V, Sahgal V (1993) Amantadine-induced coma. Arch Phys Med Rehabil 74(10):1119–1120

    Article  CAS  PubMed  Google Scholar 

  • Marin C, Papa S, Engber TM, Bonastre M, Tolosa E, Chase TN (1996) MK-801 prevents levodopa-induced motor response alterations in parkinsonian rats. Brain Res 736(1–2):202–205. doi:10.1016/0006-8993(96)00693-2

    Article  CAS  PubMed  Google Scholar 

  • Marotta D, Marini A, Banaudha K, Maharaj S, Ives J, Morrissette CR, Jonas WB (2002) Non-linear effects of cycloheximide in glutamate-treated cultured rat cerebellar neurons. Neurotoxicology 23(3):307–312. doi:10.1016/S0161-813X(02)00058-X

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi H, Swanson KL, Albuquerque EX (1997) Amantadine inhibits nicotinic acetylcholine receptor function in hippocampal neurons. J Pharmacol Exp Ther 281:834–844

    CAS  PubMed  Google Scholar 

  • Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393. doi:10.1038/nrd3430

    Article  CAS  PubMed  Google Scholar 

  • Mellone M, Stanic J, Hernandez LF, Iglesias E, Zianni E, Longhi A, Prigent A, Picconi B, Calabresi P, Hirsch EC, Obeso JA, Di Luca M, Gardoni F (2015) NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: from experimental models to patients. Front Cell Neurosci 6(9):245. doi:10.3389/fncel.2015.00245.eCollection2015

    Google Scholar 

  • Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN (1999) Amantadine for levodopa-induced dyskinesia: a 1-year follow-up study. Arch Neurol 56(11):1383–1386. doi:10.1001/archneur.56.11.1383

    Article  CAS  PubMed  Google Scholar 

  • Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA (2010) Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J Physiol 588(18):3415–3424. doi:10.1113/jphysiol.2010.190181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin N, Di Paolo T (2014) Pharmacological treatments inhibiting levodopa-induced dyskinesias in MPTP-lesioned monkeys: brain glutamate biochemical correlates. Front Neurol 5(5):144. doi:10.3389/fneur.2014.00144

    PubMed  PubMed Central  Google Scholar 

  • Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK, Amzel LM, Snyder SH (2007) Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of d-serine formation. Proc Natl Acad Sci USA 104:2950–2955. doi:10.1073/pnas.0611620104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 76(7):2157–2163

    Google Scholar 

  • Ossola B, Schendzielorz N, Chen SH, Bird GS, Tuominen RK, Männistö PT, Hong JS (2011) Amantadine protects dopamine neurons by a dual action: reducing activation of microglia and inducing expression of GDNF in astroglia. Neuropharmacology 61(4):574–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padovan-Neto FE, Echeverry MB, Tumas V, Del-Bel EA (2009) Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience 159(3):927–935. doi:10.1016/j.neuroscience.2009.01.034

    Article  CAS  PubMed  Google Scholar 

  • Padovan-Neto FE, Echeverry MB, Chiavegatto S, Del-Bel EA (2011) Nitric oxide synthase inhibitor improves de novo and longterm l-DOPA-induced dyskinesia in hemiparkinsonian rats. Front Syst Neurosci. doi:10.3389/fnsys.2011.00040

    PubMed  PubMed Central  Google Scholar 

  • Padovan-Neto FE, Ferreira NR, de Oliveira-Tavares D, de Aguiar D, da Silva CA, Raisman-Vozari R, Del Bel E (2013) Anti-dyskinetic effect of the neuronal nitric oxide synthase inhibitor is linked to decrease of FosB/deltaFosB expression. Neurosci Lett 29(541):126–131. doi:10.1016/j.neulet.2013.02.015

    Article  Google Scholar 

  • Padovan-Neto FE, Cavalcanti-Kiwiatkoviski R, Carolino RO, Anselmo-Franci J, Del Bel EA (2015) Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology 89:87–99. doi:10.1016/j.neuropharm.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  • Peeters M, Romieu P, Maurice T, Su TP, Maloteaux JM, Hermans E (2004) Involvement of the sigma 1 receptor in the modulation of dopaminergic transmission by amantadine. Eur J Neurosci 19(8):2212–2220. doi:10.1111/j.0953-816X.2004.03297.x

    Article  PubMed  Google Scholar 

  • Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P (2011) Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134:375–387

    Article  PubMed  Google Scholar 

  • Rascol O, Perez-Lloret S, Ferreira JJ (2015) New treatments for levodopa-induced motor complications. Mov Disord 30(11):1451–1460. doi:10.1002/mds.26362

    Article  CAS  PubMed  Google Scholar 

  • Rylander D, Recchia A, Mela F, Dekundy A, Danysz W, Cenci MA (2009) Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: effects on motor behavior and striatal nuclear signaling. J Pharmacol Exp Ther 330(1):227–235. doi:10.1124/jpet.108.150425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848. doi:10.1126/science.284.5421.1845

    Article  CAS  PubMed  Google Scholar 

  • Shannon KM, Goetz CG, Carroll VS, Tanner CM, Klawans HL (1987) Amantadine and motor fluctuations in chronic Parkinson’s disease. Clin Neuropharmacol 10(6):522–526

    Article  CAS  PubMed  Google Scholar 

  • Solís O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 73:49–59. doi:10.1016/j.nbd.2014.09.010

    Article  PubMed  Google Scholar 

  • Takuma K, Tanaka T, Takahashi T, Hiramatsu N, Ota Y, Ago Y, Matsuda T (2012) Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesiain hemi-Parkinsonian rats. Eur J Pharmacol 683(1–3):166–173. doi:10.1016/j.ejphar.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  • Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M (2004) Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:141–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevlopoulou A, Touzlatzi N, Pitskas N (2016) The nitric oxide donor sodium nitroprusside attenuates recognition memory deficits and social withdrawal produced by the NMDA receptor antagonist ketamine and induces anxiolytic-like behaviour in rats. Psychopharmacology 233(6):1045–1054. doi:10.1007/s00213-015-4181-x

    Article  CAS  PubMed  Google Scholar 

  • Tronci E, Fidalgo C, Zianni E, Collu BM, Stancampiano R, Morelli M, Gardoni F, Carta M (2014) Effet of memantine on L-DOPA induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson’s disease. Neuroscience 265:245–252. doi:10.1016/j.neuroscience.2014.01.042

    Article  CAS  PubMed  Google Scholar 

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, VomSaal FS, Welshons WV, Zoeller RT, Myers JP (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455. doi:10.1210/er.2011-1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JQ, Chu XP, Guo ML, Jin DZ, Xue B, Berry TJ, Fibuch EE, Mao LM (2012) Modulation of ionotropic glutamate receptors and acid-sensing ion channels by nitric oxide. Front Physiol 3:164. doi:10.3389/fphys.2012.00164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS (2003) Large effects from small exposures: I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 111(8):994–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler C, Kirik D, Björklund A, Cenci MA (2002) LDOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186. doi:10.1006/nbdi.2002.0499

    Article  PubMed  Google Scholar 

  • Wolf E, Seppi K, Katzenschlager R, Hochschorner G, Ransmayr G, Schwingenschuh P, Ott E, Kloiber I, Haubenberger D, Auff E, Poewe W (2010) Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 25(10):1357–1363. doi:10.1002/mds.23034

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support and grants provided by the Brazilian agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq). ED-B is a CNPq research fellow. The authors wish to thank Ana Carolina Issy Pereira, Sara Saltarelli, and Terence Teixeira Duarte for technical support and helpful comments and suggestions concerning the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Del-Bel.

Ethics declarations

Conflict of Interest

Authors have no financial or personal conflicts of interest related to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortolanza, M., Bariotto-dos-Santos, K.D., dos-Santos-Pereira, M. et al. Antidyskinetic Effect of 7-Nitroindazole and Sodium Nitroprusside Associated with Amantadine in a Rat Model of Parkinson’s Disease. Neurotox Res 30, 88–100 (2016). https://doi.org/10.1007/s12640-016-9618-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9618-4

Keywords

Navigation