Skip to main content
Log in

Acute Hyperammonemia Induces NMDA-Mediated Hypophosphorylation of Intermediate Filaments Through PP1 and PP2B in Cerebral Cortex of Young Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In the present work, we studied the effects of toxic ammonia levels on the cytoskeleton of neural cells, with emphasis in the homeostasis of the phosphorylating system associated with the intermediate filaments (IFs). We used in vivo and in vitro models of acute hyperammonemia in 10- and 21-day-old rats. In the in vivo model, animals were intraperitoneally injected with ammonium acetate (7 mmol/Kg), and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus 30 and 60 min after injection. The injected ammonia altered the IF phosphorylation of astrocytes (GFAP and vimentin) and neurons (neurofilament subunits of low, middle, and high molecular weight, respectively: NFL, NFM, and NFH) from cerebral cortex of 21-day-old rats. This was a transitory effect observed 30 min after injection, recovering 30 min afterward. Phosphorylation was not altered in the cerebral cortex of 10-day-old pups. The homeostasis of hippocampal IFs was preserved at the studied ages and times. In the in vitro model, cortical slices of 10- and 21-day-old rats were incubated with 0.5, 1, or 5 mM NH4Cl, and the phosphorylation level of the IF proteins was analyzed after 30 min. The IF phosphorylation was not altered in cortical slices of 10-day-old rats; however, in cortical slices of 21-day-old pups, 5 mM NH4Cl induced hypophosphorylation of GFAP and vimentin, preserving neurofilament phosphorylation levels. Hypophosphorylation was mediated by the protein phosphatases 1 (PP1) and 2B (PP2B), and this event was associated with Ca2+ influx via N-methyl-d-aspartate (NMDA) glutamate receptors. The aim of this study is to show that acute ammonia toxicity targets the phosphorylating system of IFs in the cerebral cortex of rats in a developmentally regulated manner, and NMDA-mediated Ca2+ signaling plays a central role in this mechanism. We propose that the disruption of cytoskeletal homeostasis could be an endpoint of the acute hyperammonemia in the developing brain. We believe that these results contribute for better understanding the molecular basis of the ammonia toxicity in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Azorin I, Minana MD, Felipo V, Grisolia S (1989) A simple animal model of hyperammonemia. Hepatology 10:311–314

    Article  CAS  PubMed  Google Scholar 

  • Back A, Tupper KY, Bai T, Chiranand P, Goldenberg FD, Frank JI, Brorson JR (2011) Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model. Neurol Res 33:1100–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry DM, Stevenson W, Bober BG, Wiese PJ, Dale JM, Barry GS, Byers NS, Strope JD, Chang R, Schulz DJ, Shah S, Calcutt NA, Gebremichael Y, Garcia ML (2012) Expansion of neurofilament medium C terminus increases axonal diameter independent of increases in conduction velocity or myelin thickness. J Neurosci 32:6209–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender AS, Norenberg MD (1996) Effects of ammonia on l-glutamate uptake in cultured astrocytes. Neurochem Res 21:567–573

    Article  CAS  PubMed  Google Scholar 

  • Bezanilla M, Gladfelter AS, Kovar DR, Lee W-L (2015) Cytoskeletal dynamics: a view from the membrane. J Cell Biol 209:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerring PN, Dale N, Larsen FS (2015) Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats: a biosensor study. Neurochem Res 40:258–264

    Article  CAS  PubMed  Google Scholar 

  • Bodega G, Suárez I, Paniagua C, Vacas E, Fernández B (2007) Effect of ammonia, glutamine, and serum on calcineurin, p38MAPK-diP, GADD153/CHOP10, and CNTF in primary rat astrocyte cultures. Brain Res 1175:126–133

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Henry H, Villard AM, Zurich MG, Loup M, Eilers B, Parlascino G, Matter E, Boulat O, Honegger P, Bachmann C (2002) Ammonium-induced impairment of axonal growth is prevented through glial creatine. J Neurosci 22:9810–9820

    CAS  PubMed  Google Scholar 

  • Braissant O, McLin VA, Cudalbu C (2013) Ammonia toxicity to the brain. J Inherit Metab Dis 36:595–612

    Article  CAS  PubMed  Google Scholar 

  • Brownlees J, Yates A, Bajaj NP, Davis D, Anderton BH, Leigh PN, Shaw CE, Miller CC (2000) Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J Cell Sci 113:401–407

    CAS  PubMed  Google Scholar 

  • Cagnon L, Braissant O (2007) Hyperammonemia-induced toxicity for the developing central nervous system. Brain Res Rev 56:183–197

    Article  CAS  PubMed  Google Scholar 

  • Cagnon L, Braissant O (2009) CNTF protects oligodendrocytes from ammonia toxicity: intracellular signaling pathways involved. Neurobiol Dis 33:133–142

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, Gozal D (2012) Mouse intermittent hypoxia mimicking apnea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol 226:495–508

    Article  CAS  PubMed  Google Scholar 

  • Cauli O, González-Usano A, Cabrera-Pastor A, Gimenez-Garzó C, López-Larrubia P, Ruiz-Sauri A, Hernández-Rabaza V, Duszczyk M, Malek M, Lazarewicz JW, Carratalá A, Urios A, Miguel A, Torregrosa I, Carda C, Montoliu C, Felipo V (2014) Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain. Neuromol Med 16:360–375

    Article  CAS  Google Scholar 

  • Cooper AJL (2013) Possible treatment of end-stage hyperammonemic encephalopathy by inhibition of glutamine synthetase. Metab Brain Dis 28:119–125

    Article  CAS  PubMed  Google Scholar 

  • Cudalbu C (2013) In vivo studies of brain metabolism in animal models of hepatic encephalopathy using 1H magnetic resonance spectroscopy. Metab Brain Dis 28:167–174

    Article  CAS  PubMed  Google Scholar 

  • de Almeida LM, Funchal C, Pelaez PL, Pessutto FD, Loureiro SO, Vivian L, Wajner M, Pessoa-Pureur R (2003) Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis 18:207–219

    Article  PubMed  Google Scholar 

  • Felipo V (2009) Hyperammonemia. In: Lajtha A et al (eds) Handbook of neurochemistry and molecular neurobiology. Springer, US, pp 43–69

    Chapter  Google Scholar 

  • Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  CAS  PubMed  Google Scholar 

  • Felipo V, Grau E, Miñana MD, Grisolía S (1993) Hyperammonemia decreases protein-kinase-C-dependent phosphorylation of microtubule-associated protein 2 and increases its binding to tubulin. Eur J Biochem 214:243–249

    Article  CAS  PubMed  Google Scholar 

  • Fernandes CG, Pierozan P, Soares GM, Ferreira F, Zanatta Â, Amaral AU, Borges CG, Wajner M, Pessoa-Pureur R (2015) NMDA receptors and oxidative stress induced by the major metabolites accumulating in HMG lyase deficiency mediate hypophosphorylation of cytoskeletal proteins in brain from adolescent rats: potential mechanisms contributing to the neuropathology of this disease. Neurotox Res 28:239–252

    Article  CAS  PubMed  Google Scholar 

  • Funchal C, de Lima Pelaez P, Loureiro SO, Vivian L, Pessutto FDB, de Almeida LM, Wofchuk ST, Wajner M, Pureur RP (2002) Alpha-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Brain Res Dev Brain Res 139:267–276

    Article  CAS  PubMed  Google Scholar 

  • Funchal C, de Almeida LM, Oliveira Loureiro S, Vivian L, de Lima Pelaez P, Pessutto FDB, Rosa AM, Wajner M, Pureur RP (2003) In vitro phosphorylation of cytoskeletal proteins from cerebral cortex of rats. Brain Res Brain Res Protoc 11:111–118

    Article  CAS  PubMed  Google Scholar 

  • González-Usano A, Cauli O, Agustí A, Felipo V (2013) Hyperammonemia alters the modulation by different neurosteroids of the glutamate-nitric oxide-cyclic GMP pathway through NMDA- GABAA—or sigma receptors in cerebellum in vivo. J Neurochem 125:133–143

    Article  PubMed  Google Scholar 

  • Grant P, Sharma P, Pant HC (2001) Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. Eur J Biochem 268:1534–1546

    Article  CAS  PubMed  Google Scholar 

  • Guidato S, Bajaj NPS, Miller CCJ (1996) Cellular phosphorylation of neurofilament heavy-chain by cyclin-dependent kinase-5 masks the epitope for monoclonal antibody N52. Neurosci Lett 217:157–160

    Article  CAS  PubMed  Google Scholar 

  • Heimfarth L, Loureiro SO, Reis KP, de Lima BO, Zamboni F, Lacerda S, Soska AK, Wild L, da Rocha JBT, Pureur RP (2012) Diphenylditelluride induces hypophosphorylation of intermediate filaments through modulation of DARPP-32-dependent pathways in cerebral cortex of young rats. Arch Toxicol 86:217–230

    Article  CAS  PubMed  Google Scholar 

  • Helfand BT, Chang L, Goldman RD (2004) Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 17:133–141

    Article  Google Scholar 

  • Hemmings HC Jr, Greengard P, Tung HY, Cohen P (1984) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310:503–505

    Article  CAS  PubMed  Google Scholar 

  • Hoffman PN, Griffin JW, Gold BG, Price DL (1985) Slowing of neurofilament transport and the radial growth of developing nerve fibers. J Neurosci 5:2920–2929

    CAS  PubMed  Google Scholar 

  • Holopainen IE (2008) Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem Int 52:935–947

    Article  CAS  PubMed  Google Scholar 

  • Huang FL, Glinsmann WH (1976) Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur J Biochem 70:419–426

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Svrakic N, O’Dell K, Zorumski CF (2013) Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons. Neuroscience 233:166–173

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi T, Brusilow SW, Traystman RJ, Koehler RC (2005) Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat. Am J Physiol Regul Integr Comp Physiol 88:R1612–R1619

    Article  Google Scholar 

  • Kosenko E, Kaminsky Y, Miñana MD, Grisolia S, Felipo V (1994) High ammonia levels decrease brain acetylcholinesterase activity both in vivo and in vitro. Mol Chem Neuropathol 22:177–184

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laser-Azogui A, Kornreich M, Malka-Gibor E, Beck R (2015) Neurofilament assembly and function during neuronal development. Curr Opin Cell Biol 32:92–101

    Article  CAS  PubMed  Google Scholar 

  • Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-regenerative properties of cytokine-activated astrocytes. J Neurochem 89:1092–1100

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Peterson DA, Kimura H, Schubert D (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 69:581–593

    Article  CAS  PubMed  Google Scholar 

  • Llansola M, Montoliu C, Cauli O, Hernández-Rabaza V, Agustí A, Cabrera-Pastor A, Giménez-Garzó C, González-Usano A, Felipo V (2013) Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations. Metab Brain Dis 8:151–154

    Article  Google Scholar 

  • Loureiro SO, Heimfarth L, Lacerda BA, Vidal LF, Soska A, dos Santos NG, de Souza Wyse AT, Pessoa-Pureur R (2010a) Homocysteine induces hypophosphorylation of intermediate filaments and reorganization of actin cytoskeleton in C6 glioma cells. Cell Mol Neurobiol 30:557–568

    Article  CAS  PubMed  Google Scholar 

  • Loureiro SO, Romão L, Alves T, Fonseca A, Heimfarth L, MouraNeto V, Wyse AT, Pessoa-Pureur R (2010b) Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res 1355:151–164

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Mans AM, De Joseph MR, Hawkins RA (1994) Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J Neurochem 63:1829–1838

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra A, Trigun SK (2013) Moderate grade hyperammonemia activates lactate dehydrogenase-4 and 6-phosphofructo-2-kinase to support increased lactate turnover in the brain slices. Mol Cell Biochem 81:157–161

    Article  Google Scholar 

  • Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93:421–443

    Article  CAS  PubMed  Google Scholar 

  • Monfort P, Munõz MD, ElAyadi A, Kosenko E, Felipo V (2002) Effects of hyperammonemia and liver disease on glutamatergic neurotransmission. Metab Brain Dis 17:237–250

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Sihag RK (1991) Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci 14:501–506

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD (1987) The role of astrocytes in hepatic encephalopathy. Neurochem Pathol 6:13–33

    Article  CAS  PubMed  Google Scholar 

  • Norenberg MD, Rama Rao KV, Jayakumar AR (2003) The mitochondrial permeability transition in ammonia neurotoxicity. In: Jones EA, Meijer AF, Chamuleau RA (eds) Hepatic encephalopathy and nitrogen metabolism. Kluwer, Dordtrecht, pp 267–285

    Chapter  Google Scholar 

  • Obara-Michlewska M, Tuszyńska P, Albrecht J (2013) Ammonia upregulates kynurenine aminotransferase II mRNA expression in rat brain: a role for astrocytic NMDA receptors? Metab Brain Dis 28:161–165

    Article  CAS  PubMed  Google Scholar 

  • Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J (2006) Heads and tails of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem Sci 31:383–394

    Article  CAS  PubMed  Google Scholar 

  • Paz Soldán MM, Pirko I (2012) Biogenesis and significance of central nervous system myelin. Semin Neurol 32:9–14

    Article  PubMed  Google Scholar 

  • Pierozan P, Zamoner A, Soska AK, Silvestrin RB, Oliveira Loureiro S, Heimfarth L, Mello e Souza T, Wajner M, Pessoa-Pureur R (2010) Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Exp Neurol 224:188–196

    Article  CAS  PubMed  Google Scholar 

  • Pierozan P, Zamoner A, Soska ÂK, de Lima BO, Reis KP, Zamboni F, Wajner M, Pessoa-Pureur R (2012) Signaling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. Exp Neurol 233:391–399

    Article  CAS  PubMed  Google Scholar 

  • Pierozan P, Gonçalves Fernandes C, Ferreira F, Pessoa-Pureur R (2014) Acute intrastriatal injection of quinolinic acid provokes long-lasting misregulation of the cytoskeleton in the striatum, cerebral cortex and hippocampus of young rats. Brain Res 1577:1–10

    Article  CAS  PubMed  Google Scholar 

  • Pierozan P, Ferreira F, Ortiz de Lima B, Pessoa-Pureur R (2015) Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction. J Neurosci Res 93:268–284

    Article  CAS  PubMed  Google Scholar 

  • Rao KVR, Norenberg MD (2012) Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int 60:697–706

    Article  Google Scholar 

  • Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R (2015) High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol. doi:10.1016/j.alcohol.2015.06.005

    PubMed  Google Scholar 

  • Rodrigo R, Cauli O, Boix J, El Mlili N, Agusti A, Felipo V (2009) Role of NMDA receptors in acute liver failure and ammonia toxicity: therapeutical implications. Neurochem Int 55:113–118

    Article  CAS  PubMed  Google Scholar 

  • Rose C, Michalak A, Pannunzio P, Therrien G, Quack G, Kircheis G, Butterworth RF (1998) l-ornithine-l-aspartate in experimental portal-systemic encephalopathy: therapeutic efficacy and mechanism of action. Metab Brain Dis 13:147–157

    Article  CAS  PubMed  Google Scholar 

  • Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120:205–212

    Article  CAS  PubMed  Google Scholar 

  • Shenolikar S (1995) Protein phosphatase regulation by endogenous inhibitors. Seminar Cancer Biol 6:219–227

    Article  CAS  Google Scholar 

  • Sihag RK, Inagaki M, Yamaguchi T, Shea TB, Pant HC (2007) Role of phosphorylation on the structural dynamics and function of types III and IV intermediate filaments. Exp Cell Res 313:2098–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Koiri RK, Trigun SK (2008) Acute and chronic hyperammonemia modulate antioxidant enzymes differently in cerebral cortex and cerebellum. Neurochem Res 33:103–113

    Article  CAS  PubMed  Google Scholar 

  • Strack S, Westphal RS, Colbran RJ, Ebner FF, Wadzinski BE (1997) Protein serine/threonine phosphatase 1 and 2A associate with and dephosphorylate neurofilaments. Brain Res Mol Brain Res 49:15–28

    Article  CAS  PubMed  Google Scholar 

  • Swain M, Butterworth RF, Blei AT (1992) Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology 15:449–453

    Article  CAS  PubMed  Google Scholar 

  • Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, Kerr DS, Diaz GA, Seashore MR, Lee HS, McCarter RJ, Krischer JP, Batshaw ML (2008) Urea Cycle Disorders Consortium of the Rare Diseases Clinical Research Network. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab 94:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev 6:626–640

    Article  CAS  Google Scholar 

  • Wen Z, Guirland C, G-l Ming, Zheng JQ (2004) A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. Neuron 43:835–846

    Article  CAS  PubMed  Google Scholar 

  • Whitaker AN, McKay DG (1969) Studies of catecholamine shock. I Disseminated intravascular coagulation. Am J Pathol 65:153–176

    Google Scholar 

  • Willard-Mack CL, Koehler RC, Hirata T, Cork LC, Takahashi H, Traystman RJ, Brusilow SW (1996) Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71:589–599

    Article  CAS  PubMed  Google Scholar 

  • Winder DG, Sweatt JD (2001) Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat Rev Neurosci 2:461–474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Pessoa-Pureur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, R.V., da Silva Ferreira, F., Heimfarth, L. et al. Acute Hyperammonemia Induces NMDA-Mediated Hypophosphorylation of Intermediate Filaments Through PP1 and PP2B in Cerebral Cortex of Young Rats. Neurotox Res 30, 138–149 (2016). https://doi.org/10.1007/s12640-016-9607-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9607-7

Keywords

Navigation