Abstract
Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson’s disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.
Similar content being viewed by others
References
Aguiar A et al (2013) Parkin-knockout mice did not display increased vulnerability to intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurotox Res 24:280–287
Aguiar A et al (2014) Six weeks of voluntary exercise don’t protect C57BL/6 mice against neurotoxicity of MPTP and MPP(+). Neurotox Res 25:147–152
Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez M (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803
Ahmad A, Maruyama T, Narumiya S, Doré S (2013) PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: old switch, new target. Neurotox Res 23:260–266
Anandhan A, Essa M, Manivasagam T (2013) Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 23:166–173
Andrade J, Assunção M (2012) Protective effects of chronic green tea consumption on age-related neurodegeneration. Curr Pharm Des 18:4–14
Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe W (2009) A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol 8:929–937
Archer T, Fredriksson A (2013) The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 24:393-406
Arriagada A et al (2004) On the neurotoxicity of leukoaminochrome o-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation. Neurobiol Dis 16(16):468–477
Aschner M, Allen J, Kimelberg H, LoPachin R, Streit W (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151–173
Azevedo M et al (2013) The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain 23:53. doi:10.1186/1744-8069-9-53
Aziza SA, Azab Mel-S, ElShall SK (2014) Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats. Asian Netw Sci Inform 17:13
Baluchnejadmojarad T, Roghani M, Mafakheri M (2010) Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: involvement of estrogen receptors and oxidative stress. Neurosci Lett 23:206–210
Becho JRM, Machado H, Guerra MO (2009) Rutina: estrutura, metabolismo e potencial farmacológico. Revista Interdisciplinar de Estudos Experimentais 1:4
Beking A, Vieira K (2010) Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: a population-based study involving twenty-three developed countries. Public Health Nutr 13:1403–1409. doi:10.1017/S1368980009992990
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Tredici KD (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134
Cabezas R, Avila M, González J, El-Bachá R, Barreto G (2014) PDGF-BB Protects Mitochondria from Rotenone in T98G Cells. Neurotox Res 74:80–90
Caruana M, Högen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585:1113–1120. doi:10.1016/j.febslet.2011.03.046
Chanet A, Milenkovic D, Manach C, Mazur A, Morand C (2012) Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem 60:8809–8822
Chao S, Huang S, Hu DN, Lin H-Y (2013) Subtoxic Levels of apigenin inhibit expression and secretion of vegf by uveal melanoma cells via suppression of ERK1/2 and PI3K/Akt pathways. Evid Based Complement Alternat Med 2013:817674
Chen J et al (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953
Choi SKCC, Cho YH, Choi KH, Chang J, Park MS, Kim MK, Cho KH, Kim JK (2014) Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J 50:7. doi:10.4068/cmj.2014.50.2.45
Choi W, Kim H, Xia Z (2015) JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 328:75–81
Chtourou Y, Trabelsi K, Fetoui H, Mkannez G, Kallel H, Zeghal N (2011) Manganese induces oxidative stress, redox state unbalance and disrupts membrane bound ATPases on murine neuroblastoma cells in vitro: protective role of silymarin. Neurochem Res 36:1546–1557
Costa S et al (2002) Astroglial permissivity for neuritic outgrowth in neuron-astrocyte cocultures depends on regulation of laminin bioavailability. Glia 37:105–113. doi:10.1002/glia.10015
Członkowska A, Kurkowska-Jastrzebska I, Członkowski A, Peter D, Stefano G (2002) Immune processes in the pathogenesis of Parkinson’s disease - a potential role for microglia and nitric oxide. Med Sci Monit 8:165–177
Dajas F et al (2003) Neuroprotection by flavonoids. Braz J Med Biol Res 36:1613–1620
de Sampaio e Spohr TC et al (2010) Effects of the flavonoid casticin from Brazilian Croton betulaster in cerebral cortical progenitors in vitro: direct and indirect action through astrocytes. J Neurosci Res 88:530–541. doi:10.1002/jnr.22218
Del-Bel E et al (2014) Counteraction by nitric oxide synthase inhibitor of neurochemical alterations of dopaminergic system in 6-OHDA-lesioned rats under L-DOPA treatment. Neurotox Res 25:35–44
Ebrahimi-Fakhari D, Wahlster L, McLean P (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol 124:153–172
Echeverry C, Arredondo F, Abin-Carriquiry J, Midiwo J, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure-activity relationship study. J Agric Food Chem 58:2111–2115. doi:10.1021/jf902951v
ElMassri N et al (2015) The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. Int J Neurosci 126:76–87
Engelhart M, Geerlings M, Ruitenberg A, Swieten JV, Hofman A, Witteman J, Breteler M (2002) Dietary intake of antioxidants and risk of Alzheimer disease. J Am Med Assoc 287:3223–3229. doi:10.1001/jama.287.24.3223
Exner N, Lutz A, Haass C, Winklhofer K (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062
Féres CA, Madalosso RC, Roch OA, Leite JPV, Guimarãesa TMDP, Toledoa VPP, Tagliatia CA (2006) Acute and chronic toxicological studies of Dimorphandra mollis in experimental animals. J Ethnopharmacol 108:6. doi:10.1016/j.jep.2006.06.002
Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O (2010) Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 21:397–404. doi:10.1016/j.jnutbio.2009.01.014
Frank-Cannon T, Alto L, McAlpine F, Tansey M (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47–60. doi:10.1186/1750-1326-4-47
Freitas SCS, Azevedo C, Carvalho G, Freire S, Barbosa P, Velozo E, Schaer R, Tardy M, Meyer R, Nascimento I (2010) Flavonoids inhibit angiogenic cytokine production by human glioma cells. Phytother Res 25:5. doi:10.1002/ptr.3338
Geed M, Garabadu D, Ahmad A, Krishnamurthy S (2014) Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol Biochem Behav 117:92–103
Ghofrani S, Joghataei M, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, Roghani M (2015) Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. Eur J Pharmacol 5:195–201
Giulian D, Li J, Leara B, Keenen C (1994) Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 25:227–233
Glass C, Saijo K, Winner B, Marchetto M, Gage F (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934
Gołembiowska K, Dziubina A (2012) Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats. Neurotox Res 21:222–230
Gołembiowska K, Wardas J, Noworyta-Sokołowska K, Kamińska K, Górska A (2013) Effects of adenosine receptor antagonists on the in vivo LPS-induced inflammation model of Parkinson's disease. Neurotox Res 24:29–40
Guardia T, Rotelli A, Juarez A, Pelzer L (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56:683–687. doi:10.1016/S0014-827X(01)01111-9
Haddadi R, Nayebi A, Farajniya S, Brooshghalan S, Sharifi H (2014) Silymarin improved 6-OHDA-induced motor impairment in hemi-parkisonian rats: behavioral and molecular study. Daru. doi:10.1186/2008-2231-22-38
Haleagrahara N, Siew C, Ponnusamy K (2013) Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J Toxicol Sci 38:25–33
Hampel H et al (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223:334–346
Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663
Heo H et al (2004) Naringenin from citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 17:151–157
Hirsch E, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397
Hong D, Fink A, Uversky V (2008) Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383:214–223. doi:10.1016/j.jmb.2008.08.039
Huenchuguala S et al (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:1–13
Iqbal K, Liu F, Gong C, IG-I I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664
Jagetia G, Reddy T (2002) The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study. Mutat Res 519:37–48
Jamila NKM, Khan SN, Khan N (2014) Complete NMR assignments of bioactive rotameric (3 [RIGHTWARDS ARROW] 8) biflavonoids from the bark of Garcinia hombroniana. Magn Reson Chem 57:7. doi:10.1002/mrc.4071
Janssen C et al (2015) Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice. Neurochem Int 89:157–169. doi:10.1016/j.neuint.2015.05.002
Javed H et al (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352
Johnston KM, Stern DJ, Walss AC Jr (1968) Separation of flavonoid compounds on Sephadex LH-20. J Chromatog 33:9. doi:10.1016/S0021-9673(00)98686-2
Jones Q, Warford J, Rupasinghe H, Robertson G (2012) Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci 33:602–610
Ju S, Kang J, Bae J, Pae H, Lyu Y, Jeon B (2015) The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3KAkt pathway in human renal proximal tubular epithelial cells. Evid Based Complement Alternat Med
Jung U, Jeon M, Choi M, Kim S (2014) Silibinin attenuates MPP+-induced neurotoxicity in the substantia nigra in vivo. J Med Food 17:599–605
Kabadere S, Oztopcu-Vatan P, Uyar R, Durmaz R (2011) Quercetin both partially attenuates hydrogen peroxide-induced toxicity and decreases viability of rat glial cells. Acta Biol Hung 62:221–227. doi:10.1556/ABiol.62.2011.3.1
Kalia L, Kalia S, McLean P, Lozano A, Lang A (2013) α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 73:155–169
Kandaswami C, Middleton E (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol 366:351–372
Karuppagounder S, Madathil S, Pandey M, Haobam R, Rajamma U, Mohanakumar K (2013) Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236:136–148. doi:10.1016/j.neuroscience.2013.01.032
Khan M et al (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61:1081–1093
Kim H, Song J, Park H, Park H, Yun D, Chung J (2009) Naringin protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y Cells. Korean J Physiol Pharmacol 13:281–285
Kostka M et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992–11003. doi:10.1074/jbc.M709634200
Ku SLI, Han M, Bae J (2014) Inhibitory effects of rutin on the endothelial protein c receptor shedding in vitro and in vivo. Inflammation 37:8. doi:10.1007/s10753-014-9866-5
Kumar S, Pandey A (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. doi:10.1155/2013/162750
Lao C, Kuo Y, Hsieh Y, Chen J (2013) Intranasal and subcutaneous administration of dopamine D3 receptor agonists functionally restores nigrostriatal dopamine in MPTP-treated mice. Neurotox Res 24:523–531
Lee H et al (2005) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol 84:897–905
Lee E, Park H, Ji S, Lee Y, Lee J (2014) Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J Neurosci Res 2:130–139
Lee Y, Park H, Chun H, Lee J (2015) Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J Neurosci Res 93:755–765
Leem E et al (2014) Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J Nutr Biochem 25(27):801–806
Liu J et al (2010) A new flavonoid from Selaginella tamariscina (Beauv.) Spring. Chem Pharm Bull (Tokyo) 58:549–551
Lopes F et al (2012) Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 22:138–149
Lorrio S, Sobrado M, Arias E, Roda J, García A, López M (2007) Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J Pharmacol Exp Ther 322:591–599. doi:10.1124/jpet.107.122747
Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X (2013) Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–388
Lu P et al (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 57:1270–1277
Magalingam K, Radhakrishnan A, Haleagrahara N (2013) Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 32:235–240. doi:10.3892/ijmm.2013.1375
Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s disease. Oxid Med Cell Longev. doi:10.1155/2015/314560
Martinez R, Gomes F (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 277:49311–49318
Martinez-Vicente M, Vila M (2013) Alpha-synuclein and protein degradation pathways in Parkinson’s disease: A pathological feed-back loop. Exp Neurol 247:308–311
Mascaraquea CAC, Ocóna B, Montec MJ, Suárezb MD, Zarzueloa A, Marínc JJG, Martínez-Augustinb O, Medina FS (2014) Rutin has intestinal antiinflammatory effects in the CD4+ CD62L+ Tcell transfer model of colitis. Pharmacol Res 90:9
Masoudi N, Ibanez-Cruceyra P, Offenburger S, Holmes A, Gartner A (2014) Tetraspanin (TSP-17) protects dopaminergic neurons against 6-OHDA-induced neurodegeneration in C. elegans. PLoS Genet 10:e1004767
McGeer P, Itagaki S, Akiyama H, McGeer E (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576
Mecocci P, Tinarelli C, Schulz R, Polidori M (2014) Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front Pharmacol 5:147
Mercado G, Valdés P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19:165–173
Mikia K et al (2007) Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 17:772–775. doi:10.1016/j.bmcl.2006.10.075
Moghbelinejad S et al (2014) Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 224:108–113
Mullen W, Borges G, Lean M, Roberts S, Crozier A (2010) Identification of metabolites in human plasma and urine after consumption of a polyphenol-rich juice drink. J Agric Food Chem 58:2586–2595
Munafó D, Colombo M (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation Journal of Cell Science 114:3619–3629
Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci. doi:10.1093/toxsci/kfv016
Murakami S, Miyazak I, Sogawa N, Miyoshi K, Asanuma M (2014) Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in parkinsonian mice. Neurotox Res Neurotox Res 26:285–298
Nadarajah B, Alifragis P, Wong R, Parnavelas J (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 13:607–611. doi:10.1093/cercor/13.6.607
Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4:e1000088. doi:10.1371/annotation/ec07378d-fd1b-45b8-bfed-1a20c9fd5d26
Newhouse PA, Potter A, Kelton M, Corwin J (2001) Nicotinic treatment of Alzheimer’s disease. Biol Psychiatry 49:268–278
Nones J, Costa A, Leal R, Gomes F, Trentin A (2012) The flavonoids hesperidin and rutin promote neural crest cell survival. Cell Tissue Res 350:305–315
Norris E, Giasson B, Hodara R, Xu S, Trojanowski J, Ischiropoulos H, Lee V (2005) Reversible inhibition of alphasynuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219
Palencia G, García E, Osorio-Rico L, Trejo-Solís C, Escamilla-Ramírez A, Sotelo J (2015) Neuroprotective effect of thalidomide on MPTP-induced toxicity. Neurotoxicology 47:82–87
Paris I et al (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388
Parpura V et al (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27. doi:10.1111/j.1471-4159.2012.07664.x
Paulsen BS, Souza CS, Chicaybam L, Bonamino MH, Bahia M, Costa SL, Borges HL, Rehen SK (2011) Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells. Stem Cells Dev 20:10. doi:10.1089/scd.2010.0446
Pérez-H J, Carrillo-S C, García E, Ruiz-Mar G, Pérez-Tamayo R, Chavarría A (2014) Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology 7:38–43
Perry V, Nicoll J, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201. doi:10.1038/nrneurol.2010.17
Peterson L, Flood P (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediat Inflamm 2012:401264. doi:10.1155/2012/401264
Qualls Z, Brown D, Ramlochansingh C, Hurley L, Tizabi Y (2014) Protective effects of curcumin against rotenone and salsolinol-induced toxicity: implications for Parkinson’s disease. Neurotox Res 25:81–89
Remya C, Dileep K, Tintu I, Variyar E, Sadasivan C (2014) Flavanone glycosides as acetylcholinesterase inhibitors: computational and experimental evidence. Indian J Pharm Sci 76:567–570
Renaud J, Chiasson K, Bournival J, Rouillard C, Martinoli M (2014) 17β-estradiol delays 6-OHDA-induce apoptosis by acting on Nur77 translocation from the nucleus to the cytoplasm. Neurotox Res 25:124–134
Rezai-Zadeh K, Ehrhart J, Bai Y, Sanberg P, Bickford P, Tan J, Douglas R (2008) Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation. doi:10.1186/1742-2094-5-41
Rodrigues J, Rinaldo D, Santos Ld, Vilegas W (2007) An unusual C6-C6″ linked flavonoid from Miconia cabucu (Melastomataceae). Phytochemistry 68:1781–1784
Rohn T (2012) Targeting alpha-synuclein for the treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 11:174–179
Sabogal-Guáqueta A, Muñoz-Manco J, Ramírez-Pineda J, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez G (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145
Sachdeva A, Kuhad A, Chopra K (2014) Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav 127:101–110
Santello M, Volterra A (2008) Synaptic modulation by astrocytes via Ca2+ -dependent glutamate release. Neuroscience 158:253–259. doi:10.1016/j.neuroscience.2008.03.039
Schapira A (2005) Present and future drug treatment for Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:1472–1478
Segura-Aguilar J, Kostrzewa R (2015) Neurotoxin mechanisms and processes relevant to Parkinson’s disease: an update. Neurotox Res 27:328–354
Selkoe D (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275:630–631
Silva A et al (2008) The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol 24:75–86
Simonyi A et al (2015) Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci 1:30–38
Singhal N, Srivastava G, Patel D, Jain S, Singh M (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res 50:97–109
Smith Y, Wichmann T, Factor S, DeLong M (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37:213–246
Sofroniew M, Vinters H (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:28. doi:10.1007/s00401-009-0619-8
Solanki I, Parihar P, Mansuri M, Parihar M (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6:64–72
SoniaAngeline M, Sarkar A, Anand K, Ambasta R, Kumar P (2013) Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 19:379–394
Souza C, Paulsen B, Devalle S, Costa S, Borges H, Rehen S (2015) Commitment of human pluripotent stem cells to a neural lineage is induced by the pro-estrogenic flavonoid apigenin. Adv Regen Biol 2:29244
Spencer J (2008) Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc 67:238–252
Sutinen E, Pirttilä T, Anderson G, Salminen A, Ojala J (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 16:199
Takasato Y, Rapoport S, Smith Q (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:484–493
Tardy M (2002) Role of laminin bioavailability in the astroglial permissivity for neuritic outgrowth. An Acad Bras Ciênc 74:683–690. doi:10.1590/S0001-37652002000400009
Taylor J, Main B, Crack P (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62:803–819
Terahara N (2015) Flavonoids in foods: a review. Nat Prod Commun 10:521–528
Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, Park IS (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50:11. doi:10.1021/bi101731d
Verkhratsky A, Butt A (2007) Glial neurobiology: a textbook. 1st edn. doi:10.1002/9780470517796
Villa M et al (2013) One-electron reduction of 6-hydroxydopamine quinone is essential in 6-hydroxydopamine neurotoxicity. Neurotox Res 24:94–101
Wang R, Sun Y, Huang H, Wang L, Chen J, Shen W (2015) Rutin, a natural flavonoid protects PC12 cells against sodium nitroprusside-induced neurotoxicity through activating PI3K/Akt/mTOR and ERK1/2 Pathway. Neurochem Res 40:1945–1953
Wei D, Tang J, Bai W, Wang Y, Zhang Z (2014) Ameliorative effects of baicalein on an amyloid-ß induced Alzheimer’s disease rat model: a proteomics study. Curr Alzheimer Res 11:869–881
Weinreb O, Mandel S, Amit T, Youdim M (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 5:506–516. doi:10.1016/j.jnutbio.2004.05.002
Xiao-Lin Y et al (2015) Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Function 6:3296–3306
Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280:285–295. doi:10.1016/j.taap.2014.08.014
Xu P et al (2014) Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 1:173–180
Xue X, Liu H, Qi L, Li X, Guo C, Gong D, Qu H (2014) Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Res Bull 103:54–59
Yang C, Chung J, Yang G, Li C, Meng X, Lee M (2000) Mechanisms of inhibition of carcinogenesis by tea. BioFactors 13:73–78
Yin F, Liu J, Ji X, Wang Y, Zidichouski J, Zhang J (2011) Silibinin: a novel inhibitor of Aβ aggregation. Neurochem Int 58:399–403
Yong-Kee C, Sidorova E, Hanif A, Perera G, Nash J (2012) Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson’s disease. Neurotox Res 21:185–194
Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:12. doi:10.1046/j.1471-4159.2003.01652.x
Youdim KA, Shukitt-Hale B, Joseph JA (2004) Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37:11. doi:10.1016/j.freeradbiomed.2004.08.002
Yu X, He G, Sun L, Lan X, Shi L, Xuan Z, Du GD (2012) Assessment of the treatment effect of baicalein on a model of Parkinsonian tremor and elucidation of the mechanism. Life Sci 91:5–13. doi:10.1016/j.lfs.2012.05.005
Zaminelli T et al (2014) Antidepressant and antioxidative effect of Ibuprofen in the rotenone model of Parkinson’s disease. Neurotox Res 26:351–362
Zafar K, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086
Zang F, Fangcai L, Gang C (2014) Neuroprotective effect of apigenin in rats after contusive spinal cord injury. Neurol Sci 4:8–583
Zbarsky V, Datla K, Parkar S, Rai D, Aruoma O, Dexter D (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125
Zhang S et al (2013) Baicalein reduces ß-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 91:1239–1246
Zhao L, Wang J, Wang Y, Fa X (2013) Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res 1492:33–45. doi:10.1016/j.brainres.2012.11.019
Zhou Z, Lim T (2009) Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res 43:417–430
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Costa, S.L., Silva, V.D.A., dos Santos Souza, C. et al. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res 30, 41–52 (2016). https://doi.org/10.1007/s12640-016-9600-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12640-016-9600-1