Skip to main content

Advertisement

Log in

Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders have a common characteristic that is the involvement of different cell types, typically the reactivity of astrocytes and microglia, characterizing gliosis, which in turn contributes to the neuronal dysfunction and or death. Flavonoids are secondary metabolites of plant origin widely investigated at present and represent one of the most important and diversified among natural products phenolic groups. Several biological activities are attributed to this class of polyphenols, such as antitumor activity, antioxidant, antiviral, and anti-inflammatory, among others, which give significant pharmacological importance. Our group have observed that flavonoids derived from Brazilian plants Dimorphandra mollis Bent., Croton betulaster Müll. Arg., e Poincianella pyramidalis Tul., botanical synonymous Caesalpinia pyramidalis Tul. also elicit a broad spectrum of responses in astrocytes and neurons in culture as activation of astrocytes and microglia, astrocyte associated protection of neuronal progenitor cells, neuronal differentiation and neuritogenesis. It was observed the flavonoids also induced neuronal differentiation of mouse embryonic stem cells and human pluripotent stem cells. Moreover, with the objective of seeking preclinical pharmacological evidence of these molecules, in order to assess its future use in the treatment of neurodegenerative disorders, we have evaluated the effects of flavonoids in preclinical in vitro models of neuroinflammation associated with Parkinson’s disease and glutamate toxicity associated with ischemia. In particular, our efforts have been directed to identify mechanisms involved in the changes in viability, morphology, and glial cell function induced by flavonoids in cultures of glial cells and neuronal cells alone or in interactions and clarify the relation with their neuroprotective and morphogetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguiar A et al (2013) Parkin-knockout mice did not display increased vulnerability to intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurotox Res 24:280–287

    Article  CAS  PubMed  Google Scholar 

  • Aguiar A et al (2014) Six weeks of voluntary exercise don’t protect C57BL/6 mice against neurotoxicity of MPTP and MPP(+). Neurotox Res 25:147–152

    Article  CAS  PubMed  Google Scholar 

  • Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez M (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Maruyama T, Narumiya S, Doré S (2013) PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: old switch, new target. Neurotox Res 23:260–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anandhan A, Essa M, Manivasagam T (2013) Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson’s disease. Neurotox Res 23:166–173

    Article  CAS  PubMed  Google Scholar 

  • Andrade J, Assunção M (2012) Protective effects of chronic green tea consumption on age-related neurodegeneration. Curr Pharm Des 18:4–14

    Article  CAS  PubMed  Google Scholar 

  • Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe W (2009) A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol 8:929–937

    Article  CAS  PubMed  Google Scholar 

  • Archer T, Fredriksson A (2013) The yeast product Milmed enhances the effect of physical exercise on motor performance and dopamine neurochemistry recovery in MPTP-lesioned mice. Neurotox Res 24:393-406

    Article  CAS  PubMed  Google Scholar 

  • Arriagada A et al (2004) On the neurotoxicity of leukoaminochrome o-semiquinone radical derived of dopamine oxidation: mitochondria damage, necrosis and hydroxyl radical formation. Neurobiol Dis 16(16):468–477

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Allen J, Kimelberg H, LoPachin R, Streit W (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151–173

    Article  CAS  PubMed  Google Scholar 

  • Azevedo M et al (2013) The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain 23:53. doi:10.1186/1744-8069-9-53

    Article  CAS  Google Scholar 

  • Aziza SA, Azab Mel-S, ElShall SK (2014) Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats. Asian Netw Sci Inform 17:13

    Google Scholar 

  • Baluchnejadmojarad T, Roghani M, Mafakheri M (2010) Neuroprotective effect of silymarin in 6-hydroxydopamine hemi-parkinsonian rat: involvement of estrogen receptors and oxidative stress. Neurosci Lett 23:206–210

    Article  CAS  Google Scholar 

  • Becho JRM, Machado H, Guerra MO (2009) Rutina: estrutura, metabolismo e potencial farmacológico. Revista Interdisciplinar de Estudos Experimentais 1:4

  • Beking A, Vieira K (2010) Flavonoid intake and disability-adjusted life years due to Alzheimer’s and related dementias: a population-based study involving twenty-three developed countries. Public Health Nutr 13:1403–1409. doi:10.1017/S1368980009992990

    Article  PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rüb U, Bratzke H, Tredici KD (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Cabezas R, Avila M, González J, El-Bachá R, Barreto G (2014) PDGF-BB Protects Mitochondria from Rotenone in T98G Cells. Neurotox Res 74:80–90

    Google Scholar 

  • Caruana M, Högen T, Levin J, Hillmer A, Giese A, Vassallo N (2011) Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 585:1113–1120. doi:10.1016/j.febslet.2011.03.046

    Article  CAS  PubMed  Google Scholar 

  • Chanet A, Milenkovic D, Manach C, Mazur A, Morand C (2012) Citrus flavanones: what is their role in cardiovascular protection? J Agric Food Chem 60:8809–8822

    Article  CAS  PubMed  Google Scholar 

  • Chao S, Huang S, Hu DN, Lin H-Y (2013) Subtoxic Levels of apigenin inhibit expression and secretion of vegf by uveal melanoma cells via suppression of ERK1/2 and PI3K/Akt pathways. Evid Based Complement Alternat Med 2013:817674

    PubMed  PubMed Central  Google Scholar 

  • Chen J et al (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    Article  CAS  PubMed  Google Scholar 

  • Choi SKCC, Cho YH, Choi KH, Chang J, Park MS, Kim MK, Cho KH, Kim JK (2014) Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J 50:7. doi:10.4068/cmj.2014.50.2.45

    Article  CAS  Google Scholar 

  • Choi W, Kim H, Xia Z (2015) JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 328:75–81

    Article  CAS  PubMed  Google Scholar 

  • Chtourou Y, Trabelsi K, Fetoui H, Mkannez G, Kallel H, Zeghal N (2011) Manganese induces oxidative stress, redox state unbalance and disrupts membrane bound ATPases on murine neuroblastoma cells in vitro: protective role of silymarin. Neurochem Res 36:1546–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa S et al (2002) Astroglial permissivity for neuritic outgrowth in neuron-astrocyte cocultures depends on regulation of laminin bioavailability. Glia 37:105–113. doi:10.1002/glia.10015

    Article  PubMed  Google Scholar 

  • Członkowska A, Kurkowska-Jastrzebska I, Członkowski A, Peter D, Stefano G (2002) Immune processes in the pathogenesis of Parkinson’s disease - a potential role for microglia and nitric oxide. Med Sci Monit 8:165–177

    Google Scholar 

  • Dajas F et al (2003) Neuroprotection by flavonoids. Braz J Med Biol Res 36:1613–1620

    Article  CAS  PubMed  Google Scholar 

  • de Sampaio e Spohr TC et al (2010) Effects of the flavonoid casticin from Brazilian Croton betulaster in cerebral cortical progenitors in vitro: direct and indirect action through astrocytes. J Neurosci Res 88:530–541. doi:10.1002/jnr.22218

    PubMed  Google Scholar 

  • Del-Bel E et al (2014) Counteraction by nitric oxide synthase inhibitor of neurochemical alterations of dopaminergic system in 6-OHDA-lesioned rats under L-DOPA treatment. Neurotox Res 25:35–44

    Article  CAS  Google Scholar 

  • Ebrahimi-Fakhari D, Wahlster L, McLean P (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol 124:153–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echeverry C, Arredondo F, Abin-Carriquiry J, Midiwo J, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure-activity relationship study. J Agric Food Chem 58:2111–2115. doi:10.1021/jf902951v

    Article  CAS  PubMed  Google Scholar 

  • ElMassri N et al (2015) The effect of different doses of near infrared light on dopaminergic cell survival and gliosis in MPTP-treated mice. Int J Neurosci 126:76–87

    Article  CAS  Google Scholar 

  • Engelhart M, Geerlings M, Ruitenberg A, Swieten JV, Hofman A, Witteman J, Breteler M (2002) Dietary intake of antioxidants and risk of Alzheimer disease. J Am Med Assoc 287:3223–3229. doi:10.1001/jama.287.24.3223

    Article  CAS  Google Scholar 

  • Exner N, Lutz A, Haass C, Winklhofer K (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Féres CA, Madalosso RC, Roch OA, Leite JPV, Guimarãesa TMDP, Toledoa VPP, Tagliatia CA (2006) Acute and chronic toxicological studies of Dimorphandra mollis in experimental animals. J Ethnopharmacol 108:6. doi:10.1016/j.jep.2006.06.002

    Article  Google Scholar 

  • Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O (2010) Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 21:397–404. doi:10.1016/j.jnutbio.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  • Frank-Cannon T, Alto L, McAlpine F, Tansey M (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47–60. doi:10.1186/1750-1326-4-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freitas SCS, Azevedo C, Carvalho G, Freire S, Barbosa P, Velozo E, Schaer R, Tardy M, Meyer R, Nascimento I (2010) Flavonoids inhibit angiogenic cytokine production by human glioma cells. Phytother Res 25:5. doi:10.1002/ptr.3338

    Google Scholar 

  • Geed M, Garabadu D, Ahmad A, Krishnamurthy S (2014) Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol Biochem Behav 117:92–103

    Article  CAS  PubMed  Google Scholar 

  • Ghofrani S, Joghataei M, Mohseni S, Baluchnejadmojarad T, Bagheri M, Khamse S, Roghani M (2015) Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. Eur J Pharmacol 5:195–201

    Article  CAS  Google Scholar 

  • Giulian D, Li J, Leara B, Keenen C (1994) Phagocytic microglia release cytokines and cytotoxins that regulate the survival of astrocytes and neurons in culture. Neurochem Int 25:227–233

    Article  CAS  PubMed  Google Scholar 

  • Glass C, Saijo K, Winner B, Marchetto M, Gage F (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gołembiowska K, Dziubina A (2012) Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats. Neurotox Res 21:222–230

    Article  PubMed  CAS  Google Scholar 

  • Gołembiowska K, Wardas J, Noworyta-Sokołowska K, Kamińska K, Górska A (2013) Effects of adenosine receptor antagonists on the in vivo LPS-induced inflammation model of Parkinson's disease. Neurotox Res 24:29–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guardia T, Rotelli A, Juarez A, Pelzer L (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56:683–687. doi:10.1016/S0014-827X(01)01111-9

    Article  CAS  PubMed  Google Scholar 

  • Haddadi R, Nayebi A, Farajniya S, Brooshghalan S, Sharifi H (2014) Silymarin improved 6-OHDA-induced motor impairment in hemi-parkisonian rats: behavioral and molecular study. Daru. doi:10.1186/2008-2231-22-38

    PubMed  PubMed Central  Google Scholar 

  • Haleagrahara N, Siew C, Ponnusamy K (2013) Effect of quercetin and desferrioxamine on 6-hydroxydopamine (6-OHDA) induced neurotoxicity in striatum of rats. J Toxicol Sci 38:25–33

    Article  CAS  PubMed  Google Scholar 

  • Hampel H et al (2010) Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp Neurol 223:334–346

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME (2002) New directions in neuronal migration. Science 297:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Heo H et al (2004) Naringenin from citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord 17:151–157

    Article  CAS  PubMed  Google Scholar 

  • Hirsch E, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Hong D, Fink A, Uversky V (2008) Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein. J Mol Biol 383:214–223. doi:10.1016/j.jmb.2008.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huenchuguala S et al (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:1–13

    Article  CAS  Google Scholar 

  • Iqbal K, Liu F, Gong C, IG-I I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagetia G, Reddy T (2002) The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study. Mutat Res 519:37–48

    Article  CAS  PubMed  Google Scholar 

  • Jamila NKM, Khan SN, Khan N (2014) Complete NMR assignments of bioactive rotameric (3 [RIGHTWARDS ARROW] 8) biflavonoids from the bark of Garcinia hombroniana. Magn Reson Chem 57:7. doi:10.1002/mrc.4071

    Google Scholar 

  • Janssen C et al (2015) Effect of perinatally supplemented flavonoids on brain structure, circulation, cognition, and metabolism in C57BL/6J mice. Neurochem Int 89:157–169. doi:10.1016/j.neuint.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  • Javed H et al (2012) Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210:340–352

    Article  CAS  PubMed  Google Scholar 

  • Johnston KM, Stern DJ, Walss AC Jr (1968) Separation of flavonoid compounds on Sephadex LH-20. J Chromatog 33:9. doi:10.1016/S0021-9673(00)98686-2

    Article  Google Scholar 

  • Jones Q, Warford J, Rupasinghe H, Robertson G (2012) Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci 33:602–610

    Article  CAS  PubMed  Google Scholar 

  • Ju S, Kang J, Bae J, Pae H, Lyu Y, Jeon B (2015) The flavonoid apigenin ameliorates cisplatin-induced nephrotoxicity through reduction of p53 activation and promotion of PI3KAkt pathway in human renal proximal tubular epithelial cells. Evid Based Complement Alternat Med

  • Jung U, Jeon M, Choi M, Kim S (2014) Silibinin attenuates MPP+-induced neurotoxicity in the substantia nigra in vivo. J Med Food 17:599–605

    Article  CAS  PubMed  Google Scholar 

  • Kabadere S, Oztopcu-Vatan P, Uyar R, Durmaz R (2011) Quercetin both partially attenuates hydrogen peroxide-induced toxicity and decreases viability of rat glial cells. Acta Biol Hung 62:221–227. doi:10.1556/ABiol.62.2011.3.1

    Article  CAS  PubMed  Google Scholar 

  • Kalia L, Kalia S, McLean P, Lozano A, Lang A (2013) α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 73:155–169

    Article  CAS  PubMed  Google Scholar 

  • Kandaswami C, Middleton E (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol 366:351–372

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder S, Madathil S, Pandey M, Haobam R, Rajamma U, Mohanakumar K (2013) Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236:136–148. doi:10.1016/j.neuroscience.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  • Khan M et al (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61:1081–1093

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Song J, Park H, Park H, Yun D, Chung J (2009) Naringin protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y Cells. Korean J Physiol Pharmacol 13:281–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostka M et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992–11003. doi:10.1074/jbc.M709634200

    Article  CAS  PubMed  Google Scholar 

  • Ku SLI, Han M, Bae J (2014) Inhibitory effects of rutin on the endothelial protein c receptor shedding in vitro and in vivo. Inflammation 37:8. doi:10.1007/s10753-014-9866-5

    Google Scholar 

  • Kumar S, Pandey A (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J. doi:10.1155/2013/162750

    Google Scholar 

  • Lao C, Kuo Y, Hsieh Y, Chen J (2013) Intranasal and subcutaneous administration of dopamine D3 receptor agonists functionally restores nigrostriatal dopamine in MPTP-treated mice. Neurotox Res 24:523–531

    Article  CAS  PubMed  Google Scholar 

  • Lee H et al (2005) Baicalein attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Eur J Cell Biol 84:897–905

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Park H, Ji S, Lee Y, Lee J (2014) Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J Neurosci Res 2:130–139

    Article  CAS  Google Scholar 

  • Lee Y, Park H, Chun H, Lee J (2015) Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J Neurosci Res 93:755–765

    Article  CAS  PubMed  Google Scholar 

  • Leem E et al (2014) Naringin protects the nigrostriatal dopaminergic projection through induction of GDNF in a neurotoxin model of Parkinson’s disease. J Nutr Biochem 25(27):801–806

    Article  CAS  PubMed  Google Scholar 

  • Liu J et al (2010) A new flavonoid from Selaginella tamariscina (Beauv.) Spring. Chem Pharm Bull (Tokyo) 58:549–551

    Article  CAS  Google Scholar 

  • Lopes F et al (2012) Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine. Neurotox Res 22:138–149

    Article  CAS  PubMed  Google Scholar 

  • Lorrio S, Sobrado M, Arias E, Roda J, García A, López M (2007) Galantamine postischemia provides neuroprotection and memory recovery against transient global cerebral ischemia in gerbils. J Pharmacol Exp Ther 322:591–599. doi:10.1124/jpet.107.122747

    Article  CAS  PubMed  Google Scholar 

  • Lou H, Jing X, Wei X, Shi H, Ren D, Zhang X (2013) Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–388

    Article  PubMed  CAS  Google Scholar 

  • Lu P et al (2009) Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. Br J Pharmacol 57:1270–1277

    Article  CAS  Google Scholar 

  • Magalingam K, Radhakrishnan A, Haleagrahara N (2013) Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int J Mol Med 32:235–240. doi:10.3892/ijmm.2013.1375

    CAS  PubMed  Google Scholar 

  • Magalingam KB, Radhakrishnan AK, Haleagrahara N (2015) Protective mechanisms of flavonoids in Parkinson’s disease. Oxid Med Cell Longev. doi:10.1155/2015/314560

    PubMed  PubMed Central  Google Scholar 

  • Martinez R, Gomes F (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 277:49311–49318

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Vicente M, Vila M (2013) Alpha-synuclein and protein degradation pathways in Parkinson’s disease: A pathological feed-back loop. Exp Neurol 247:308–311

    Article  CAS  PubMed  Google Scholar 

  • Mascaraquea CAC, Ocóna B, Montec MJ, Suárezb MD, Zarzueloa A, Marínc JJG, Martínez-Augustinb O, Medina FS (2014) Rutin has intestinal antiinflammatory effects in the CD4+ CD62L+ Tcell transfer model of colitis. Pharmacol Res 90:9

    Google Scholar 

  • Masoudi N, Ibanez-Cruceyra P, Offenburger S, Holmes A, Gartner A (2014) Tetraspanin (TSP-17) protects dopaminergic neurons against 6-OHDA-induced neurodegeneration in C. elegans. PLoS Genet 10:e1004767

    Article  PubMed  PubMed Central  Google Scholar 

  • McGeer P, Itagaki S, Akiyama H, McGeer E (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24:574–576

    Article  CAS  PubMed  Google Scholar 

  • Mecocci P, Tinarelli C, Schulz R, Polidori M (2014) Nutraceuticals in cognitive impairment and Alzheimer’s disease. Front Pharmacol 5:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado G, Valdés P, Hetz C (2013) An ERcentric view of Parkinson’s disease. Trends Mol Med 19:165–173

    Article  CAS  PubMed  Google Scholar 

  • Mikia K et al (2007) Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 17:772–775. doi:10.1016/j.bmcl.2006.10.075

    Article  CAS  Google Scholar 

  • Moghbelinejad S et al (2014) Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 224:108–113

    Article  CAS  PubMed  Google Scholar 

  • Mullen W, Borges G, Lean M, Roberts S, Crozier A (2010) Identification of metabolites in human plasma and urine after consumption of a polyphenol-rich juice drink. J Agric Food Chem 58:2586–2595

    Article  CAS  PubMed  Google Scholar 

  • Munafó D, Colombo M (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation Journal of Cell Science 114:3619–3629

    PubMed  Google Scholar 

  • Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci. doi:10.1093/toxsci/kfv016

    Google Scholar 

  • Murakami S, Miyazak I, Sogawa N, Miyoshi K, Asanuma M (2014) Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in parkinsonian mice. Neurotox Res Neurotox Res 26:285–298

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah B, Alifragis P, Wong R, Parnavelas J (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb Cortex 13:607–611. doi:10.1093/cercor/13.6.607

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni S, Jung P, Levine H (2008) Astrocytes optimize the synaptic transmission of information. PLoS Comput Biol 4:e1000088. doi:10.1371/annotation/ec07378d-fd1b-45b8-bfed-1a20c9fd5d26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newhouse PA, Potter A, Kelton M, Corwin J (2001) Nicotinic treatment of Alzheimer’s disease. Biol Psychiatry 49:268–278

    Article  CAS  PubMed  Google Scholar 

  • Nones J, Costa A, Leal R, Gomes F, Trentin A (2012) The flavonoids hesperidin and rutin promote neural crest cell survival. Cell Tissue Res 350:305–315

    Article  CAS  PubMed  Google Scholar 

  • Norris E, Giasson B, Hodara R, Xu S, Trojanowski J, Ischiropoulos H, Lee V (2005) Reversible inhibition of alphasynuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219

    Article  CAS  PubMed  Google Scholar 

  • Palencia G, García E, Osorio-Rico L, Trejo-Solís C, Escamilla-Ramírez A, Sotelo J (2015) Neuroprotective effect of thalidomide on MPTP-induced toxicity. Neurotoxicology 47:82–87

    Article  CAS  PubMed  Google Scholar 

  • Paris I et al (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parpura V et al (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27. doi:10.1111/j.1471-4159.2012.07664.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen BS, Souza CS, Chicaybam L, Bonamino MH, Bahia M, Costa SL, Borges HL, Rehen SK (2011) Agathisflavone enhances retinoic acid-induced neurogenesis and its receptors α and β in pluripotent stem cells. Stem Cells Dev 20:10. doi:10.1089/scd.2010.0446

    Article  CAS  Google Scholar 

  • Pérez-H J, Carrillo-S C, García E, Ruiz-Mar G, Pérez-Tamayo R, Chavarría A (2014) Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology 7:38–43

    Article  CAS  Google Scholar 

  • Perry V, Nicoll J, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201. doi:10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  • Peterson L, Flood P (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediat Inflamm 2012:401264. doi:10.1155/2012/401264

    Article  CAS  Google Scholar 

  • Qualls Z, Brown D, Ramlochansingh C, Hurley L, Tizabi Y (2014) Protective effects of curcumin against rotenone and salsolinol-induced toxicity: implications for Parkinson’s disease. Neurotox Res 25:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remya C, Dileep K, Tintu I, Variyar E, Sadasivan C (2014) Flavanone glycosides as acetylcholinesterase inhibitors: computational and experimental evidence. Indian J Pharm Sci 76:567–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renaud J, Chiasson K, Bournival J, Rouillard C, Martinoli M (2014) 17β-estradiol delays 6-OHDA-induce apoptosis by acting on Nur77 translocation from the nucleus to the cytoplasm. Neurotox Res 25:124–134

    Article  CAS  PubMed  Google Scholar 

  • Rezai-Zadeh K, Ehrhart J, Bai Y, Sanberg P, Bickford P, Tan J, Douglas R (2008) Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation. doi:10.1186/1742-2094-5-41

    PubMed  PubMed Central  Google Scholar 

  • Rodrigues J, Rinaldo D, Santos Ld, Vilegas W (2007) An unusual C6-C6″ linked flavonoid from Miconia cabucu (Melastomataceae). Phytochemistry 68:1781–1784

    Article  CAS  PubMed  Google Scholar 

  • Rohn T (2012) Targeting alpha-synuclein for the treatment of Parkinson’s disease. CNS Neurol Disord Drug Targets 11:174–179

    Article  CAS  PubMed  Google Scholar 

  • Sabogal-Guáqueta A, Muñoz-Manco J, Ramírez-Pineda J, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez G (2015) The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93:134–145

    Article  PubMed  CAS  Google Scholar 

  • Sachdeva A, Kuhad A, Chopra K (2014) Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav 127:101–110

    Article  CAS  PubMed  Google Scholar 

  • Santello M, Volterra A (2008) Synaptic modulation by astrocytes via Ca2+ -dependent glutamate release. Neuroscience 158:253–259. doi:10.1016/j.neuroscience.2008.03.039

    Article  PubMed  CAS  Google Scholar 

  • Schapira A (2005) Present and future drug treatment for Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar J, Kostrzewa R (2015) Neurotoxin mechanisms and processes relevant to Parkinson’s disease: an update. Neurotox Res 27:328–354

    Article  CAS  PubMed  Google Scholar 

  • Selkoe D (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275:630–631

    Article  CAS  PubMed  Google Scholar 

  • Silva A et al (2008) The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol 24:75–86

    Article  CAS  PubMed  Google Scholar 

  • Simonyi A et al (2015) Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sci 1:30–38

    Article  CAS  Google Scholar 

  • Singhal N, Srivastava G, Patel D, Jain S, Singh M (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. J Pineal Res 50:97–109

    CAS  PubMed  Google Scholar 

  • Smith Y, Wichmann T, Factor S, DeLong M (2012) Parkinson’s disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 37:213–246

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew M, Vinters H (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:28. doi:10.1007/s00401-009-0619-8

    Article  Google Scholar 

  • Solanki I, Parihar P, Mansuri M, Parihar M (2015) Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 6:64–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SoniaAngeline M, Sarkar A, Anand K, Ambasta R, Kumar P (2013) Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 19:379–394

    Article  CAS  Google Scholar 

  • Souza C, Paulsen B, Devalle S, Costa S, Borges H, Rehen S (2015) Commitment of human pluripotent stem cells to a neural lineage is induced by the pro-estrogenic flavonoid apigenin. Adv Regen Biol 2:29244

    Google Scholar 

  • Spencer J (2008) Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance. Proc Nutr Soc 67:238–252

    Article  CAS  PubMed  Google Scholar 

  • Sutinen E, Pirttilä T, Anderson G, Salminen A, Ojala J (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 16:199

    Google Scholar 

  • Takasato Y, Rapoport S, Smith Q (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:484–493

    Google Scholar 

  • Tardy M (2002) Role of laminin bioavailability in the astroglial permissivity for neuritic outgrowth. An Acad Bras Ciênc 74:683–690. doi:10.1590/S0001-37652002000400009

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Main B, Crack P (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62:803–819

    Article  CAS  PubMed  Google Scholar 

  • Terahara N (2015) Flavonoids in foods: a review. Nat Prod Commun 10:521–528

    PubMed  Google Scholar 

  • Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, Park IS (2011) Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50:11. doi:10.1021/bi101731d

    Article  CAS  Google Scholar 

  • Verkhratsky A, Butt A (2007) Glial neurobiology: a textbook. 1st edn. doi:10.1002/9780470517796

  • Villa M et al (2013) One-electron reduction of 6-hydroxydopamine quinone is essential in 6-hydroxydopamine neurotoxicity. Neurotox Res 24:94–101

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Sun Y, Huang H, Wang L, Chen J, Shen W (2015) Rutin, a natural flavonoid protects PC12 cells against sodium nitroprusside-induced neurotoxicity through activating PI3K/Akt/mTOR and ERK1/2 Pathway. Neurochem Res 40:1945–1953

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Tang J, Bai W, Wang Y, Zhang Z (2014) Ameliorative effects of baicalein on an amyloid-ß induced Alzheimer’s disease rat model: a proteomics study. Curr Alzheimer Res 11:869–881

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Mandel S, Amit T, Youdim M (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 5:506–516. doi:10.1016/j.jnutbio.2004.05.002

    Article  CAS  Google Scholar 

  • Xiao-Lin Y et al (2015) Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Function 6:3296–3306

    Article  CAS  Google Scholar 

  • Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280:285–295. doi:10.1016/j.taap.2014.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P et al (2014) Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res 1:173–180

    Article  CAS  Google Scholar 

  • Xue X, Liu H, Qi L, Li X, Guo C, Gong D, Qu H (2014) Baicalein ameliorated the upregulation of striatal glutamatergic transmission in the mice model of Parkinson’s disease. Brain Res Bull 103:54–59

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Chung J, Yang G, Li C, Meng X, Lee M (2000) Mechanisms of inhibition of carcinogenesis by tea. BioFactors 13:73–78

    Article  PubMed  Google Scholar 

  • Yin F, Liu J, Ji X, Wang Y, Zidichouski J, Zhang J (2011) Silibinin: a novel inhibitor of Aβ aggregation. Neurochem Int 58:399–403

    Article  CAS  PubMed  Google Scholar 

  • Yong-Kee C, Sidorova E, Hanif A, Perera G, Nash J (2012) Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson’s disease. Neurotox Res 21:185–194

    Article  CAS  PubMed  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:12. doi:10.1046/j.1471-4159.2003.01652.x

    Article  CAS  Google Scholar 

  • Youdim KA, Shukitt-Hale B, Joseph JA (2004) Flavonoids and the brain: interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37:11. doi:10.1016/j.freeradbiomed.2004.08.002

    Article  CAS  Google Scholar 

  • Yu X, He G, Sun L, Lan X, Shi L, Xuan Z, Du GD (2012) Assessment of the treatment effect of baicalein on a model of Parkinsonian tremor and elucidation of the mechanism. Life Sci 91:5–13. doi:10.1016/j.lfs.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  • Zaminelli T et al (2014) Antidepressant and antioxidative effect of Ibuprofen in the rotenone model of Parkinson’s disease. Neurotox Res 26:351–362

    Article  CAS  PubMed  Google Scholar 

  • Zafar K, Siegel D, Ross D (2006) A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Mol Pharmacol 70:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Zang F, Fangcai L, Gang C (2014) Neuroprotective effect of apigenin in rats after contusive spinal cord injury. Neurol Sci 4:8–583

    Google Scholar 

  • Zbarsky V, Datla K, Parkar S, Rai D, Aruoma O, Dexter D (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Zhang S et al (2013) Baicalein reduces ß-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 91:1239–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Wang J, Wang Y, Fa X (2013) Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res 1492:33–45. doi:10.1016/j.brainres.2012.11.019

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Lim T (2009) Dopamine (DA) induced irreversible proteasome inhibition via DA derived quinones. Free Radic Res 43:417–430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Lima Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, S.L., Silva, V.D.A., dos Santos Souza, C. et al. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res 30, 41–52 (2016). https://doi.org/10.1007/s12640-016-9600-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9600-1

Keywords

Navigation