Skip to main content

Advertisement

Log in

Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood–brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC–MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. application. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π–π or π-cationic interaction aside at the AChE catalytic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUCtotal :

Plasma concentration–time curve from zero up to infinity

AUC0–240 :

Plasma concentration–time curve from 0 up to 240 min

BBB:

Blood–brain barrier

C max :

Maximum concentration

HPLC:

High performance liquid chromatography

MG:

Myasthenia gravis

MuSK:

Muscle-specific tyrosine kinase

nAChR:

Nicotinic acetylcholine receptor

T max :

Time to maximum concentration

t 1/2 :

Half-life of compound in plasma

λz :

Terminal rate constant

References

  • Amourette C, Lamproglou I, Barbier L, Fauquette W, Zoppe A, Viret R et al (2009) Gulf war illness: effects of repeated stress and pyridostigmine treatment on blood-brain barrier permeability and cholinesterase activity in rat brain. Behav Brain Res 203(2):207–214

    Article  PubMed  CAS  Google Scholar 

  • Arning J, Stolte S, Boschen A, Stock F, Pitner WR, Welz-Biermann U et al (2008) Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase. Green Chem 10(1):47–58

    Article  CAS  Google Scholar 

  • Chernikova EY, Fedorov YV, Fedorova OA (2012) Cucurbituril as a new “host” of organic molecules in inclusion complexes. Russ Chem B 61(7):1363–1390

    Article  CAS  Google Scholar 

  • Conejo-Garcia A, Pisani L, Nunez MDC, Catto M, Nicolotti O, Leonetti F et al (2011) Homodimeric bis-quaternary heterocyclic ammonium salts as potent acetyl- and butyrylcholinesterase inhibitors: a systematic investigation of the influence of linker and cationic heads over affinity and selectivity. J Med Chem 54(8):2627–2645

    Article  PubMed  CAS  Google Scholar 

  • Foy DS, Trepanier LA, Shelton GD (2011) Cholinergic crisis after neostigmine administration in a dog with acquired focal myasthenia gravis. J Vet Emerg Crit Car 21(5):547–551

    Google Scholar 

  • Gilhus NE (2012) Myasthenia and the neuromuscular junction. Curr Opin Neurol 25(5):523–529

    Article  PubMed  CAS  Google Scholar 

  • Holford N (2013) Disease progression and neuroscience. J Pharmacokinet Phar 40(3):369–376

    Article  Google Scholar 

  • Johnson JL, Cusack B, Hughes TF, McCullough EH, Fauq A, Romanovskis P et al (2003) Inhibitors tethered near the acetylcholinesterase active site serve as molecular rulers of the peripheral and acylation sites. J Biol Chem 278(40):38948–38955

    Article  PubMed  CAS  Google Scholar 

  • Karasova JZ, Stodulka P, Kuca K (2010) In vitro screening of blood-brain barrier penetration of clinically used acetylcholinesterase reactivators. J Appl Biomed 8(1):35–40

    Article  CAS  Google Scholar 

  • Karasova JZ, Hnidkova D, Pohanka M, Musilek K, Chilcott RP, Kuca K (2012) Pharmacokinetics of acetylcholinesterase reactivator K203 and consequent evaluation of low molecular weight antioxidants/markers of oxidative stress. J Appl Biomed 10:71–78

    Article  CAS  Google Scholar 

  • Karasova JZ, Zemek F, Musilek K, Kuca K (2013) Time-dependent changes of oxime K027 concentrations in different parts of rat central nervous system. Neurotox Res 23(1):63–68

    Article  PubMed  CAS  Google Scholar 

  • Karasova JZ, Zemek F, Kassa J, Kuca K (2014) Entry of oxime K027 into the different parts of rat brain: comparison with obidoxime and oxime HI-6. J Appl Biomed 12(1):25–29

    Article  Google Scholar 

  • Komloova M, Musilek K, Horova A, Holas O, Dohnal V, Gunn-Moore F et al (2011) Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors—implications for early Myasthenia gravis treatment. Bioorg Med Chem Lett 21:2505–2509

    Article  PubMed  CAS  Google Scholar 

  • Koneczny I, Cossins J, Vincent A (2014) The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat 224(1):29–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leon R, Garcia AG, Marco-Contelles J (2013) Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 33(1):139–189

    Article  PubMed  CAS  Google Scholar 

  • Miller RG, Barohn RJ, Dubinsky R (2010) Expanding the evidence base for therapeutics in myasthenia gravis. An Neurol 68(6):776–777

    Article  Google Scholar 

  • Mukherjee PK, Satheeshkumar N, Venkatesh P, Venkatesh M (2011) Lead finding for acetyl cholinesterase inhibitors from natural origin: structure activity relationship and scope. Mini-Rev Med Chem 11(3):247–262

    Article  PubMed  CAS  Google Scholar 

  • Musilek K, Pavlikova R, Marek J, Komloova M, Holas O, Hrabinova M et al (2011a) The preparation, in vitro screening and molecular docking of symmetrical bisquaternary cholinesterase inhibitors containing a but-(2E)-en-1,4-diyl connecting linkage. J Enzym Inhib Med Chem 26(2):245–253

    Article  CAS  Google Scholar 

  • Musilek K, Komloova M, Holas O, Hrabinova M, Pohanka M, Dohnal V et al (2011b) Preparation and in vitro screening of symmetrical bis-isoquinolinium cholinesterase inhibitors bearing various connecting linkage—implications for early Myasthenia gravis treatment. Eur J Med Chem 46(2):811–818

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo K, Fujii N, Huguchi S, Aoyama T, Goto I, Tatsuhara T (1992) Influence of food on serum-ambenonium concentration in patients with myasthenia-gravis. Eur J Clin Pharmacol 42(4):371–374

    PubMed  CAS  Google Scholar 

  • Ramamurthy V, Parthasarathy A (2011) Chemistry in restricted spaces: select photodimerizations in cages, cavities, and capsules. Isr J Chem 51(7):817–829

    Article  CAS  Google Scholar 

  • Schumm F, Henze T (2011) Symptomatic treatment of myasthenia gravis and other neuromuscular transmission disorders. Aktuel Neurol 38(4):178–189

    Article  Google Scholar 

  • Sieb JP (2014) Myasthenia gravis: an update for the clinician. Clin Exp Immunol 175(3):408–418

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tharassebloch C, Chabenat C, Boucly P, Marchand J, Elkharrat D, Bouclygoester C et al (1991) Pharmacokinetic studies of ambenonium chloride in patients with myasthenia-gravis. Eur J Drug Metab Ph 16(4):299–303

    Article  CAS  Google Scholar 

  • van Sonderen A, Wirtz PW, Verschuuren JJGM, Titulaer MJ (2013) Paraneoplastic syndromes of the neuromuscular junction: therapeutic options in myasthenia gravis, Lambert-Eaton myasthenic syndrome, and neuromyotonia. Curr Treat Opin Neurol 15(2):224–239

    Article  Google Scholar 

  • Walker S, Oun R, McInnes FJ, Wheate NJ (2011) The potential of cucurbit[n]urils in drug delivery. Isr J Chem 51(5–6):616–624

    Article  CAS  Google Scholar 

  • Worek F, Mast U, Kiderlen D, Diepold Ch, Eyer P (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thanks Mrs. Bc. Martina Tumova for skill technical assistance in sample preparation. This study was supported by the Long-Term Developing Plan 1011 (Ministry of Defense), Project for Conceptual Development of Research Organization 00179906 (University Hospital in Hradec Kralove), and Long-Term Development Plan of University Hradec Kralove.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Zdarova Karasova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasova, J.Z., Hroch, M., Musilek, K. et al. Small Quaternary Inhibitors K298 and K524: Cholinesterases Inhibition, Absorption, Brain Distribution, and Toxicity. Neurotox Res 29, 267–274 (2016). https://doi.org/10.1007/s12640-015-9582-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9582-4

Keywords

Navigation