Skip to main content
Log in

Repeated Application of 4-Aminopyridine Provoke an Increase in Entorhinal Cortex Excitability and Rearrange AMPA and Kainate Receptors

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Entorhinal cortex is a highly epilepsy-prone brain region. Effects of repetitive seizures on ionotropic glutamate receptors (iGluRs) were investigated in rat entorhinal cortex slices. Seizures were induced by daily administration of 4-aminopyridine (4-AP). Electrophysiological, pharmacological and histological investigations were carried out to determine changes in synaptic efficacy and in sensitivity of iGluRs due to recurring seizures. Repeated 4-AP-induced seizures increased the amplitude of evoked synaptic field responses in rat entorhinal cortical slices. While vulnerability to inhibition of AMPA receptors by the specific antagonist GYKI 52466 was slightly reduced, responsiveness to NMDA receptor antagonist APV remained unaffected. Testing of bivalent cation permeability of iGluRs revealed reduced Ca2+-influx through non-NMDA receptors. According to the semi-quantitative histoblot analysis GluA1–4, GluA1, GluA2, GluK5, GluN1 and GluN2A subunit protein expression differently altered. While there was a marked decrease in the level of GluA1–4, GluA2 and GluK5 receptor subunits, GluA1 and GluN2A protein levels moderately increased. The results indicate that brief convulsions, repeated daily for 10 days can increase overall entorhinal cortex excitability despite a reduction in AMPA/kainate receptor activity, probably through the alteration of local network susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appleby VJ et al (2011) LTP in hippocampal neurons is associated with a CaMKII-mediated increase in GluA1 surface expression. J Neurochem 116:530–543. doi:10.1111/j.1471-4159.2010.07133.x

    Article  CAS  PubMed  Google Scholar 

  • Armand V, Hoffmann P, Vergnes M, Heinemann U (1999) Epileptiform activity induced by 4-aminopyridine in entorhinal cortex hippocampal slices of rats with a genetically determined absence epilepsy (GAERS). Brain Res 841:62–69

    Article  CAS  PubMed  Google Scholar 

  • Avoli M, Perreault P, Olivier A, Villemure JG (1988) 4-Aminopyridine induces a long-lasting depolarizing GABA-ergic potential in human neocortical and hippocampal neurons maintained in vitro. Neurosci Lett 94:327–332

    Article  CAS  PubMed  Google Scholar 

  • Bleakman D et al (1996) Activity of 2,3-benzodiazepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 35:1689–1702

    Article  CAS  PubMed  Google Scholar 

  • Borbely S, Halasy K, Somogyvari Z, Detari L, Vilagi I (2006) Laminar analysis of initiation and spread of epileptiform discharges in three in vitro models. Brain Res Bull 69:161–167. doi:10.1016/j.brainresbull.2005.11.018

    Article  CAS  PubMed  Google Scholar 

  • Borbely S et al (2009) Modification of ionotropic glutamate receptor-mediated processes in the rat hippocampus following repeated, brief seizures. Neuroscience 159:358–368. doi:10.1016/j.neuroscience.2008.12.027

    Article  CAS  PubMed  Google Scholar 

  • Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782

    Article  CAS  PubMed  Google Scholar 

  • Chang BS, Lowenstein DH (2003) Epilepsy. New Engl J Med 349:1257–1266. doi:10.1056/NEJMra022308

    Article  PubMed  Google Scholar 

  • Choi YS, Cho KO, Kim SY (2007) Asymmetry in enhanced neurogenesis in the rostral dentate gyrus following kainic acid-induced status epilepticus in adult rats. Arch Pharm Res 30:646–652. doi:10.1007/bf02977661

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5:952–962. doi:10.1038/nrn1556

    Article  CAS  PubMed  Google Scholar 

  • Cremer CM, Palomero-Gallagher N, Bidmon HJ, Schleicher A, Speckmann EJ, Zilles K (2009) Pentylenetetrazole-induced seizures affect binding site densities for GABA, glutamate and adenosine receptors in the rat brain. Neuroscience 163:490–499. doi:10.1016/j.neuroscience.2009.03.068

    Article  CAS  PubMed  Google Scholar 

  • Doczi J, Banczerowski-Pelyhe I, Barna B, Vilagi I (1999) Effect of a glutamate receptor antagonist (GYKI 52466) on 4-aminopyridine-induced seizure activity developed in rat cortical slices. Brain Res Bull 49:435–440

    Article  CAS  PubMed  Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14:245–278

    Article  CAS  PubMed  Google Scholar 

  • Friedman LK, Veliskova J (1998) GluR2 hippocampal knockdown reveals developmental regulation of epileptogenicity and neurodegeneration. Mol Brain Res 61:224–231

    Article  CAS  PubMed  Google Scholar 

  • Friedman LK, Pellegrini-Giampietro DE, Sperber EF, Bennett MV, Moshe SL, Zukin RS (1994) Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J Neurosci 14:2697–2707

    CAS  PubMed  Google Scholar 

  • Gallyas F Jr, Ball SM, Molnar E (2003) Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. J Neurochem 86:1414–1427

    Article  CAS  PubMed  Google Scholar 

  • Gashi E, Avallone J, Webster T, Friedman LK (2007) Altered excitability and distribution of NMDA receptor subunit proteins in cortical layers of rat pups following multiple perinatal seizures. Brain Res 1145:56–65

    Article  CAS  PubMed  Google Scholar 

  • Gulyás-Kovács A, Dóczi J, Tarnawa I, Détári L, Banczerowski-Pelyhe I, Világi I (2002) Comparison of spontaneous and evoked epileptiform activity in three in vitro epilepsy models. Brain Res 945:174–180. doi:10.1016/s0006-8993(02)02751-8

    Article  PubMed  Google Scholar 

  • Hestrin S (1993) Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons. Neuron 11:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Isaac JT, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871. doi:10.1016/j.neuron.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  • Jane DE, Lodge D, Collingridge GL (2009) Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56:90–113. doi:10.1016/j.neuropharm.2008.08.023

    Article  CAS  PubMed  Google Scholar 

  • Jia YH, Zhu X, Li SY, Ni JH, Jia HT (2006) Kainate exposure suppresses activation of GluR2 subunit promoter in primary cultured cerebral cortical neurons through induction of RE1-silencing transcription factor. Neurosci Lett 403:103–108. doi:10.1016/j.neulet.2006.04.027

    Article  CAS  PubMed  Google Scholar 

  • Johansen TH, Chaudhary A, Verdoorn TA (1995) Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors. Mol Pharmacol 48:946–955

    CAS  PubMed  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29. doi:10.1007/s00213-005-2200-z

    Article  CAS  PubMed  Google Scholar 

  • Kharazia VN, Prince DA (2001) Changes of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors in layer V of epileptogenic, chronically isolated rat neocortex. Neuroscience 102:23–34

    Article  CAS  PubMed  Google Scholar 

  • Kopniczky Z et al (2005) Lateral entorhinal cortex lesions rearrange afferents, glutamate receptors, increase seizure latency and suppress seizure-induced c-fos expression in the hippocampus of adult rat. J Neurochem 95:111–124. doi:10.1111/j.1471-4159.2005.03347.x

    Article  CAS  PubMed  Google Scholar 

  • Kovacs A et al (2003) Seizure, neurotransmitter release, and gene expression are closely related in the striatum of 4-aminopyridine-treated rats. Epilepsy Res 55:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lason W, Turchan J, Przewlocka B, Labuz D, Mika J, Przewlocki R (1997) Seizure-related changes in the glutamate R2 and R5 receptor genes expression in the rat hippocampal formation. J Neural Transm 104:125–133

    Article  CAS  PubMed  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542. doi:10.1007/s00424-010-0809-1

    Article  CAS  PubMed  Google Scholar 

  • Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481–495. doi:10.1038/nrn1118

    Article  CAS  PubMed  Google Scholar 

  • Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130:567–580

    Article  CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. Journal Physiol 394:501–527

    Article  CAS  Google Scholar 

  • Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54:369–415

    Article  CAS  PubMed  Google Scholar 

  • Mihaly A, Bencsik K, Solymosi T (1990) Naltrexone potentiates 4-aminopyridine seizures in the rat. J Neural Transm Gen Sect 79:59–67

    Article  CAS  PubMed  Google Scholar 

  • Mihaly A et al (2005) Neocortical c-fos mRNA transcription in repeated, brief, acute seizures: is c-fos a coincidence detector? Int J Mol Med 15:481–486

    CAS  PubMed  Google Scholar 

  • Molnár E (2008) Molecular organization and regulation of glutamate receptors in developing and adult mammalian central nervous systems. In: Lajtha A, Vizi ES (eds) Handbook of neurochemistry and molecular neurobiology. Springer New York, pp 415–441. doi:10.1007/978-0-387-30382-6_17

  • Molnar E, Isaac JT (2002) Developmental and activity dependent regulation of ionotropic glutamate receptors at synapses. Scientific World J 2:27–47. doi:10.1100/tsw.2002.74

    Article  CAS  Google Scholar 

  • Nadler JV (2003) The recurrent mossy fiber pathway of the epileptic brain. Neurochem Res 28:1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Nadler JV, Perry BW, Cotman CW (1978) Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271:676–677

    Article  CAS  PubMed  Google Scholar 

  • Najm IM et al (2000) Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia 41:971–976

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini-Giampietro DE, Gorter JA, Bennett MV, Zukin RS (1997) The GluR2 (GluR-B) hypothesis: Ca(2+)-permeable AMPA receptors in neurological disorders. Trends Neurosci 20:464–470

    Article  CAS  PubMed  Google Scholar 

  • Pena F, Tapia R (2000) Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience 101:547–561

    Article  CAS  PubMed  Google Scholar 

  • Pena F, Bargas J, Tapia R (2002) Paired pulse facilitation is turned into paired pulse depression in hippocampal slices after epilepsy induced by 4-aminopyridine in vivo. Neuropharmacology 42:807–812

    Article  CAS  PubMed  Google Scholar 

  • Pickard L, Noel J, Henley JM, Collingridge GL, Molnar E (2000) Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 20:7922–7931

    CAS  PubMed  Google Scholar 

  • Pruss RM, Akeson RL, Racke MM, Wilburn JL (1991) Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 7:509–518

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Todorovic M, Kapur J (2012) Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus. Ann Neurol 72:91–102. doi:10.1002/ana.23570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scorza FA, Arida RM, Naffah-Mazzacoratti Mda G, Scerni DA, Calderazzo L, Cavalheiro EA (2009) The pilocarpine model of epilepsy: what have we learned? An Acad Bras Cienc 81:345–365

    Article  CAS  PubMed  Google Scholar 

  • Silva AV, Regondi MC, Cipelletti B, Frassoni C, Cavalheiro EA, Spreafico R (2005) Neocortical and hippocampal changes after multiple pilocarpine-induced status epilepticus in rats. Epilepsia 46:636–642. doi:10.1111/j.1528-1167.2005.31604.x

    Article  PubMed  Google Scholar 

  • Stricker NL, Huganir RL (2002) Ampa/kainate receptors. In: Moss SJ, Henley J (eds) Receptor and ion-channel trafficking: cell biology of ligand-gated and voltage-sensitive ion channels. Oxford University Press, New York, pp 131–155. doi:10.1093/acprof:oso/9780192632241.003.0006

  • Szakacs R, Weiczner R, Mihaly A, Krisztin-Peva B, Zador Z, Zador E (2003) Non-competitive NMDA receptor antagonists moderate seizure-induced c-fos expression in the rat cerebral cortex. Brain Res Bull 59:485–493

    Article  CAS  PubMed  Google Scholar 

  • Tarnawa I, Farkas S, Berzsenyi P, Patfalusi M, Andrasi F (1990) Reflex inhibitory action of a non-NMDA type excitatory amino acid antagonist, GYKI 52466. Acta Physiol Hung 75(Suppl):277–278

    PubMed  Google Scholar 

  • Thesleff S (1980) Aminopyridines and synaptic transmission. Neuroscience 5:1413–1419

    Article  CAS  PubMed  Google Scholar 

  • Tolner EA, Frahm C, Metzger R, Gorter JA, Witte OW, Lopes da Silva FH, Heinemann U (2007) Synaptic responses in superficial layers of medial entorhinal cortex from rats with kainate-induced epilepsy. Neurobiol Dis 26:419–438. doi:10.1016/j.nbd.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  • Tonnes J, Stierli B, Cerletti C, Behrmann JT, Molnar E, Streit P (1999) Regional distribution and developmental changes of GluR1-flop protein revealed by monoclonal antibody in rat brain. J Neurochem 73:2195–2205

    CAS  PubMed  Google Scholar 

  • Traub RD, Borck C, Colling SB, Jefferys JG (1996) On the structure of ictal events in vitro. Epilepsia 37:879–891

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496. doi:10.1124/pr.109.002451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335

    Article  CAS  PubMed  Google Scholar 

  • Vilagi I, Csucs G, Tarnawa I, Banczerowski-Pelyhe I (1996) An increased intensity of N-methyl-D-aspartate (NMDA) but not non-NMDA receptor activation may be responsible for the enhancement of excitatory processes in the neocortex of two-week-old rats: a brain slices study. Neurosci Lett 203:139–142

    Article  CAS  PubMed  Google Scholar 

  • Vilagi I, Dobo E, Borbely S, Czege D, Molnar E, Mihaly A (2009) Repeated 4-aminopyridine induced seizures diminish the efficacy of glutamatergic transmission in the neocortex. Exp Neurol 219:136–145. doi:10.1016/j.expneurol.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  • Vizi S, Bagosi A, Krisztin-Peva B, Gulya K, Mihaly A (2004) Repeated 4-aminopyridine seizures reduce parvalbumin content in the medial mammillary nucleus of the rat brain. Mol Brain Res 131:110–118. doi:10.1016/j.molbrainres.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  • Weiczner R, Krisztin-Peva B, Mihaly A (2008) Blockade of AMPA-receptors attenuates 4-aminopyridine seizures, decreases the activation of inhibitory neurons but is ineffective against seizure-related astrocytic swelling. Epilepsy Res 78:22–32. doi:10.1016/j.eplepsyres.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  • Wilding TJ, Huettner JE (1995) Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol Pharmacol 47:582–587

    CAS  PubMed  Google Scholar 

  • Zhu LJ, Chen Z, Zhang LS, Xu SJ, Xu AJ, Luo JH (2004) Spatiotemporal changes of the N-methyl-d-aspartate receptor subunit levels in rats with pentylenetetrazole-induced seizures. Neurosci Lett 356:53–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant from the Biotechnology and Biological Sciences Research Council, UK (Grant BB/J015938/1 to E.M.) and from TAMOP (4.2.2/A-11/1/KONV-2012-0052 to A.M.).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Borbély.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borbély, S., Czégé, D., Molnár, E. et al. Repeated Application of 4-Aminopyridine Provoke an Increase in Entorhinal Cortex Excitability and Rearrange AMPA and Kainate Receptors. Neurotox Res 27, 441–452 (2015). https://doi.org/10.1007/s12640-014-9515-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9515-7

Keywords

Navigation