Skip to main content

Advertisement

Log in

Enhanced Aggressive Behaviour in a Mouse Model of Depression

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Depression is one of the most common chronic mental disorders, which is a leading cause of morbidity and mortality in patients. Depression often leads to offensive and defensive behaviours but the underlying mechanisms are not known. We propose that the aggressive behaviours in depression can be modelled in animal experiments. In this study, we successfully established a mouse model of depression using the chronic unpredictable mild stress (CUMS) paradigm and detected aggressive and social dominance behaviours in rodents by resident/intruder test and social dominance tube test (SDTT), respectively. The CUMS-exposed mice showed increased defensive, offensive and aggressive behaviours in the resident–intruder test. In the SDTT, these mice showed enhanced social dominance. These alterations were associated with reduced MAP-2 expression in the hippocampus while no difference in β-tubulin expression was detected. In addition, the treatment of anti-depressant fluoxetine reversed the aggressive behaviours without reducing the social dominance behaviour induced by CUMS. However, fluoxetine did effectively reverted the changes in MAP-2 expression in the hippocampus. In addition, the nonspecific tricyclic antipsychotic drug, clozapine, reversed all symptoms of CUMS-exposed mice including aggressive tendencies, impulsive violence, social dominance behaviour and MAP-2 expression in the hippocampus. The results suggests that social maladjustment such as competition and social dominance are likely related to the dopaminergic system rather than the serotonergic system and the hippocampal dendritic structure protein MAP-2. Thus, dominance can be separated from aggression. This study shows that aggression/hostility and social hierarchy/dominance are increased in the CUMS-exposed mice and thus provide an excellent model for further study in the diagnosis and the treatment of depression-associated aggression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahman A, Abou-Donia S, El-Masry E, Shetty A, Abou-Donia M (2004) Stress and combined exposure to low doses of pyridostigmine bromide, DEET, and permethrin produce neurochemical and neuropathological alterations in cerebral cortex, hippocampus, and cerebellum. J Toxicol Environ Health A 67(2):163–192

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SM, Mapletoft SJ (1989) A new approach to explain aggression. Percept Mot Skills 69(2):403–408

    Article  CAS  PubMed  Google Scholar 

  • Anderson HD (2011) Suicide ideation, depressive symptoms, and out-of-home placement among youth in the U.S. child welfare system. J Clin Child Adolesc Psychol 40(6):790–796

    Article  PubMed  Google Scholar 

  • Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, Schaffer DJ, Radulovic J, Churchill GA, Redei EE (2012) Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol Psychiatry 17(1):49–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arsenault-Lapierre G, Kim C, Turecki G (2004) Psychiatric diagnoses in 3275 suicides: a meta-analysis. BMC Psychiatry 4:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Beaudoin-Gobert M, Sgambato-Faure V (2014) Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology 81:15–30

    Article  CAS  PubMed  Google Scholar 

  • Berg J, Kaltiala-Heino R, Valimaki M (2011) Management of aggressive behaviour among adolescents in forensic units: a four-country perspective. J Psychiatr Ment Health Nurs 18(9):776–785

    Article  CAS  PubMed  Google Scholar 

  • Berg C, Backstrom T, Winberg S, Lindberg R, Brandt I (2013) Developmental exposure to fluoxetine modulates the serotonin system in hypothalamus. PLoS ONE 8(1):e55053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 7(2):137–151

    Article  CAS  PubMed  Google Scholar 

  • Biaggio MK, Godwin WH (1987) Relation of depression to anger and hostility constructs. Psychol Rep 61(1):87–90

    Article  CAS  PubMed  Google Scholar 

  • Bianchi M, Hagan JJ, Heidbreder CA (2005) Neuronal plasticity, stress and depression: involvement of the cytoskeletal microtubular system? Curr Drug Targets CNS Neurol Disord 4(5):597–611

    Article  CAS  PubMed  Google Scholar 

  • Blokland A, Lieben C, Deutz NE (2002) Anxiogenic and depressive-like effects, but no cognitive deficits, after repeated moderate tryptophan depletion in the rat. J Psychopharmacol 16(1):39–49

    Article  CAS  PubMed  Google Scholar 

  • Breuer ME, McGinnis MY, Lumia AR, Possidente BP (2001) Aggression in male rats receiving anabolic androgenic steroids: effects of social and environmental provocation. Horm Behav 40(3):409–418

    Article  CAS  PubMed  Google Scholar 

  • Burgado J, Harrell CS, Eacret D, Reddy R, Barnum CJ, Tansey MG, Miller AH, Wang H, Neigh GN (2014) Two weeks of predatory stress induces anxiety-like behavior with co-morbid depressive-like behavior in adult male mice. Behav Brain Res 275C:120–125

    Article  Google Scholar 

  • Burke WH, Wesolowski MD, Lane I (1988) A positive approach to the treatment of aggressive brain injured clients. Int J Rehabil Res 11(3):235–241

    Article  CAS  PubMed  Google Scholar 

  • Carnevali L, Trombini M, Porta A, Montano N, de Boer SF, Sgoifo A (2013) Vagal withdrawal and susceptibility to cardiac arrhythmias in rats with high trait aggressiveness. PLoS ONE 8(7):e68316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cleare AJ, Bond AJ (2000) Ipsapirone challenge in aggressive men shows an inverse correlation between 5-HT1A receptor function and aggression. Psychopharmacology 148(4):344–349

    Article  CAS  PubMed  Google Scholar 

  • Cougle JR, Resnick H, Kilpatrick DG (2009) PTSD, depression, and their comorbidity in relation to suicidality: cross-sectional and prospective analyses of a national probability sample of women. Depress Anxiety 26(12):1151–1157

    Article  PubMed  Google Scholar 

  • Courtet P (2010) Suicidal risk in recurrent depression. Encephale 36(Suppl 5):S127–S131

    Article  PubMed  Google Scholar 

  • Crombach A, Elbert T (2014) The benefits of aggressive traits: a study with current and former street children in Burundi. Child Abuse Negl 38(6):1041–1050

    Article  PubMed  Google Scholar 

  • Dalca IM, McGirr A, Renaud J, Turecki G (2013) Gender-specific suicide risk factors: a case-control study of individuals with major depressive disorder. J Clin Psychiatry 74(12):1209–1216

    Article  PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62(4):479–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drijgers RL, Verhey FR, Tissingh G, van Domburg PH, Aalten P, Leentjens AF (2012) The role of the dopaminergic system in mood, motivation and cognition in Parkinson’s disease: a double blind randomized placebo-controlled experimental challenge with pramipexole and methylphenidate. J Neurol Sci 320(1–2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Ebesutani C, Kim E, Young J (2014) The role of violence exposure and negative affect in understanding child and adolescent aggression. Child Psychiatry Hum Dev. doi:10.1007/s10578-014-0442-x

    PubMed  Google Scholar 

  • Eichelman BS (1990) Neurochemical and psychopharmacologic aspects of aggressive behavior. Annu Rev Med 41:149–158

    Article  CAS  PubMed  Google Scholar 

  • Fava M, Vuolo RD, Wright EC, Nierenberg AA, Alpert JE, Rosenbaum JF (2000) Fenfluramine challenge in unipolar depression with and without anger attacks. Psychiatry Res 94(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Floody OR, Pfaff DW (1977) Aggressive behavior in female hamsters: the hormonal basis for fluctuations in female aggressiveness correlated with estrous state. J Comp Physiol Psychol 91(3):443–464

    Article  CAS  PubMed  Google Scholar 

  • Friedman A, Friedman Y, Dremencov E, Yadid G (2008) VTA dopamine neuron bursting is altered in an animal model of depression and corrected by desipramine. J Mol Neurosci 34(3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Gardner EL, Walker LS, Paredes W (1993) Clozapine’s functional mesolimbic selectivity is not duplicated by the addition of anticholinergic action to haloperidol: a brain stimulation study in the rat. Psychopharmacology 110(1–2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Gershon AA, Vishne T, Grunhaus L (2007) Dopamine D2-like receptors and the antidepressant response. Biol Psychiatry 61(2):145–153

    Article  CAS  PubMed  Google Scholar 

  • Grimes JM, Ricci LA, Melloni RH Jr (2003) Glutamic acid decarboxylase (GAD65) immunoreactivity in brains of aggressive, adolescent anabolic steroid-treated hamsters. Horm Behav 44(3):271–280

    Article  CAS  PubMed  Google Scholar 

  • Harrison RJ, Connor DF, Nowak C, Melloni RH Jr (2000) Chronic low-dose cocaine treatment during adolescence facilitates aggression in hamsters. Physiol Behav 69(4–5):555–562

    Article  CAS  PubMed  Google Scholar 

  • Henn FA, Vollmayr B (2005) Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29(4–5):799–804

    Article  PubMed  Google Scholar 

  • Hetrick SE, Parker AG, Robinson J, Hall N, Vance A (2012) Predicting suicidal risk in a cohort of depressed children and adolescents. Crisis 33(1):13–20

    PubMed  Google Scholar 

  • Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN, Wiborg O, Jensen K (2011) Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 21(4):422–433

    Article  CAS  PubMed  Google Scholar 

  • Homberg JR, Schiepers OJ, Schoffelmeer AN, Cuppen E, Vanderschuren LJ (2007) Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats. Psychopharmacology 195(2):175–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howell BR, McCormack KM, Grand AP, Sawyer NT, Zhang X, Maestripieri D, Hu X, Sanchez MM (2013) Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: associations with high cortisol during infancy. Biol Mood Anxiety Disord 3(1):21

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsu Y, Earley RL, Wolf LL (2006) Modulation of aggressive behaviour by fighting experience: mechanisms and contest outcomes. Biol Rev Camb Philos Soc 81(1):33–74

    Article  PubMed  Google Scholar 

  • Itoh TJ, Hotani H (2004) Microtubule dynamics and the regulation by microtubule-associated proteins (MAPs). Biol Sci Space 18(3):116–117

    PubMed  Google Scholar 

  • Kalueff AV, Wheaton M, Murphy DL (2007) What’s wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 179(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Kapur S, Mann JJ (1992) Role of the dopaminergic system in depression. Biol Psychiatry 32(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593–602

    Article  PubMed  Google Scholar 

  • Kumar B, Kuhad A, Chopra K (2011) Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology 214(4):819–828

    Article  CAS  PubMed  Google Scholar 

  • Kuroda Y, McEwen BS (1998) Effect of chronic restraint stress and tianeptine on growth factors, growth-associated protein-43 and microtubule-associated protein 2 mRNA expression in the rat hippocampus. Brain Res Mol Brain Res 59(1):35–39

    Article  CAS  PubMed  Google Scholar 

  • Luo DD, An SC, Zhang X (2008) Involvement of hippocampal serotonin and neuropeptide Y in depression induced by chronic unpredicted mild stress. Brain Res Bull 77(1):8–12

    Article  CAS  PubMed  Google Scholar 

  • Lynn SE, Egar JM, Walker BG, Sperry TS, Ramenofsky M (2007) Fish on Prozac: a simple, noninvasive physiology laboratory investigating the mechanisms of aggressive behavior in Betta splendens. Adv Physiol Educ 31(4):358–363

    Article  PubMed  Google Scholar 

  • Malkesman O, Maayan R, Weizman A, Weller A (2006) Aggressive behavior and HPA axis hormones after social isolation in adult rats of two different genetic animal models for depression. Behav Brain Res 175(2):408–414

    Article  CAS  PubMed  Google Scholar 

  • Mann JJ (2003) Neurobiology of suicidal behaviour. Nat Rev Neurosci 4(10):819–828

    Article  CAS  PubMed  Google Scholar 

  • Mann JJ, Currier D (2007) A review of prospective studies of biologic predictors of suicidal behavior in mood disorders. Arch Suicide Res 11(1):3–16

    Article  PubMed  Google Scholar 

  • Mao QQ, Huang Z, Zhong XM, Feng CR, Pan AJ, Li ZY, Ip SP, Che CT (2010) Effects of SYJN, a Chinese herbal formula, on chronic unpredictable stress-induced changes in behavior and brain BDNF in rats. J Ethnopharmacol 128(2):336–341

    Article  PubMed  Google Scholar 

  • McGirr A, Renaud J, Bureau A, Seguin M, Lesage A, Turecki G (2008) Impulsive-aggressive behaviours and completed suicide across the life cycle: a predisposition for younger age of suicide. Psychol Med 38(3):407–417

    CAS  PubMed  Google Scholar 

  • Meikle MN, Prieto JP, Urbanavicius J, Lopez X, Abin-Carriquiry JA, Prunell G, Scorza MC (2013) Anti-aggressive effect elicited by coca-paste in isolation-induced aggression of male rats: influence of accumbal dopamine and cortical serotonin. Pharmacol Biochem Behav 110:216–223

    Article  CAS  PubMed  Google Scholar 

  • Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, Reymond A, Walz K (2008) Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki–Lupski syndrome. Hum Mol Genet 17(16):2486–2495

    Article  CAS  PubMed  Google Scholar 

  • Mysiw WJ, Sandel ME (1997) The agitated brain injured patient. Part 2: Pathophysiology and treatment. Arch Phys Med Rehabil 78(2):213–220

    Article  CAS  PubMed  Google Scholar 

  • Nader MA, Nader SH, Czoty PW, Riddick NV, Gage HD, Gould RW, Blaylock BL, Kaplan JR, Garg PK, Davies HM, Morton D, Garg S, Reboussin BA (2012) Social dominance in female monkeys: dopamine receptor function and cocaine reinforcement. Biol Psychiatry 72(5):414–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noain D, Perez-Millan MI, Bello EP, Luque GM, Casas Cordero R, Gelman DM, Peper M, Tornadu IG, Low MJ, Becu-Villalobos D, Rubinstein M (2013) Central dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males. J Neurosci 33(13):5834–5842

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Nayak S, Sahu PK, Swain T (2011) Piperine protects epilepsy associated depression: a study on role of monoamines. Eur Rev Med Pharmacol Sci 15(11):1288–1295

    CAS  PubMed  Google Scholar 

  • Peng YL, Liu YN, Liu L, Wang X, Jiang CL, Wang YX (2012) Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J Neuroinflamm 9:75

    Article  CAS  Google Scholar 

  • Perez J, Mori S, Caivano M, Popoli M, Zanardi R, Smeraldi E, Racagni G (1995) Effects of fluvoxamine on the protein phosphorylation system associated with rat neuronal microtubules. Eur Neuropsychopharmacol 5(Suppl):65–69

    Article  CAS  PubMed  Google Scholar 

  • Pinna G (2010) In a mouse model relevant for post-traumatic stress disorder, selective brain steroidogenic stimulants (SBSS) improve behavioral deficits by normalizing allopregnanolone biosynthesis. Behav Pharmacol 21(5–6):438–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pothion S, Bizot JC, Trovero F, Belzung C (2004) Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 155(1):135–146

    Article  PubMed  Google Scholar 

  • Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48(8):766–777

    Article  CAS  PubMed  Google Scholar 

  • Reddy PL, Khanna S, Subhash MN, Channabasavanna SM, Rao BS (1992) CSF amine metabolites in depression. Biol Psychiatry 31(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Ruan CS, Wang SF, Shen YJ, Guo Y, Yang CR, Zhou FH, Tan LT, Zhou L, Liu JJ, Wang WY, Xiao ZC, Zhou XF (2014) Deletion of TRIM32 protects mice from anxiety- and depression-like behaviors under mild stress. Eur J Neurosci 40(4):2680–2690

    Article  PubMed  Google Scholar 

  • Sartori Oliveira CE, Gai BM, Godoi B, Zeni G, Nogueira CW (2012) The antidepressant-like action of a simple selenium-containing molecule, methyl phenyl selenide, in mice. Eur J Pharmacol 690(1–3):119–123

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Xu GZ (2007) Effect of interleukin-1 beta on glutamine synthetase in rat retinal Muller cell under high glucose conditions. Zhonghua Yan Ke Za Zhi 43(8):744–749

    CAS  PubMed  Google Scholar 

  • Soetanto A, Wilson RS, Talbot K, Un A, Schneider JA, Sobiesk M, Kelly J, Leurgans S, Bennett DA, Arnold SE (2010) Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch Gen Psychiatry 67(5):448–457

    Article  PubMed Central  PubMed  Google Scholar 

  • Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R (2005) Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 4(7):420–430

    Article  CAS  PubMed  Google Scholar 

  • Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R (1994) Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 14(9):5373–5380

    CAS  PubMed  Google Scholar 

  • Suarez EC, Krishnan KR (2006) The relation of free plasma tryptophan to anger, hostility, and aggression in a nonpatient sample of adult men and women. Ann Behav Med 31(3):254–260

    Article  PubMed  Google Scholar 

  • Summers CH, Winberg S (2006) Interactions between the neural regulation of stress and aggression. J Exp Biol 209(Pt 23):4581–4589

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Quadros IM, de Almeida RM, Miczek KA (2011) Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology 213(2–3):183–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tallerova AV, Kovalenko LP, Durnev AD, Seredenin SB (2011) Effect of antiasthenic drug ladasten on the level of cytokines and behavior in experimental model of anxious depression in C57BL/6 male mice. Eksp Klin Farmakol 74(11):3–5

    CAS  PubMed  Google Scholar 

  • van de Poll NE, Smeets J, van Oyen HG, van der Zwan SM (1982) Behavioral consequences of agonistic experience in rats: sex differences and the effects of testosterone. J Comp Physiol Psychol 96(6):893–903

    Article  PubMed  Google Scholar 

  • Veenstra-VanderWeele J, Muller CL, Iwamoto H, Sauer JE, Owens WA, Shah CR, Cohen J, Mannangatti P, Jessen T, Thompson BJ, Ye R, Kerr TM, Carneiro AM, Crawley JN, Sanders-Bush E, McMahon DG, Ramamoorthy S, Daws LC, Sutcliffe JS, Blakely RD (2012) Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proc Natl Acad Sci USA 109(14):5469–5474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh RN, Cummins RA (1976) The Open-Field Test: a critical review. Psychol Bull 83(3):482–504

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334(6056):693–697

    Article  CAS  PubMed  Google Scholar 

  • Ward MS, Lamb J, May JM, Harrison FE (2013) Behavioral and monoamine changes following severe vitamin C deficiency. J Neurochem 124(3):363–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Yadid G, Friedman A (2008) Dynamics of the dopaminergic system as a key component to the understanding of depression. Prog Brain Res 172:265–286

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Zhang ZG, Bai YY, Zhou HF, Zhou L, Ruan CS, Li F, Li CQ, Zheng HY, Shen LJ, Zhou XF (2014) Foraging activity is reduced in a mouse model of depression. Neurotox Res 25(3):235–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Mark Vyner-Smith for proof reading the manuscript. The animal experimental work was done in Kunming Medical University (KMU). X. F. Z. is a visiting professor of KMU. F. H. Zhou was supported by NHMRC overseas bio-medical training fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Y. Zheng or X. F. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C.R., Bai, Y.Y., Ruan, C.S. et al. Enhanced Aggressive Behaviour in a Mouse Model of Depression. Neurotox Res 27, 129–142 (2015). https://doi.org/10.1007/s12640-014-9498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9498-4

Keywords

Navigation