Skip to main content
Log in

Melatonin Antagonizes Mn-Induced Oxidative Injury Through the Activation of Keap1–Nrf2–ARE Signaling Pathway in the Striatum of Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Excessive manganese (Mn) exposure can lead to oxidative injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) exerts an antioxidant response toward various environmental toxicants in the brain. However, the role of Nrf2 against Mn-induced oxidative injury remains largely unexplored. This study investigated the role of melatonin (MLT), an agent that was recently shown to induce the activation of the Kelch-like ECH-associated protein 1 (Keap1)–Nrf2–antioxidant response elements (ARE) pathway against manganism. Mice were randomly divided into six groups, including control, 12.5, 25, 50 mg/kg MnCl2, MLT control, and MLT + 50 mg/kg MnCl2. The following were determined: behavioral activity; pathological changes; immunofluorescence staining of Neuronal Nuclei and glial fibrillary acidic protein; cell apoptosis; the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH); the immunohistochemical expression; and the protein levels of Nrf2, Keap1, and downstream enzymes. Mn-induced motor disorders, pathological damage, neuron degeneration, astrocytes activation, apoptosis, ROS and MDA generation, and GSH depletion. Nrf2, keap1, heme oxygenase-1 and NAD(P)H dehydrogenase, and quinone 1 showed a biphasic expression trend, which was most evidenced in the 12.5 mg/kg MnCl2 group. Changes in γ-glutamylcysteine synthetase, glutathione peroxidase 1, glutathionine S-transferase, glutathione reductase, and superoxide dismutase decreased in a concentration-dependent manner as a result of Mn exposure. MLT antagonized oxidative injury through the activation of the Keap1–Nrf2–ARE signaling pathway. In conclusion, disturbance of the Keap1–Nrf2–ARE signaling pathway partly caused oxidative injury. MLT can activate Nrf2 and its downstream enzymes and reverse Mn-induced oxidative injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Mn:

Manganese

MnO2 :

Manganese dioxide

PD:

Parkinson’s disease

MMT:

Methylcyclopentadienyl manganese tricarbonyl

HD:

Huntington’s disease

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

BBB:

Blood–brain barrier

ROS:

Reactive oxygen species

ATP:

Adenosine triphosphate

Nrf2:

Nuclear factor erythroid 2-related factor 2

Keap1:

Kelch-like ECH-associated protein 1

ARE:

Antioxidant response elements

HO-1:

Heme oxygenase-1

NQO1:

NAD(P)H dehydrogenase, quinone 1

SOD:

Superoxide dismutase

γ-GCS:

γ-Glutamylcysteine synthetase

GPx-1:

Glutathione peroxidase 1

GR:

Glutathione reductase

GST:

Glutathionine S-transferase

MLT:

N-Acetyl-5-methoxytryptamine

–HO· :

Hydroxyl radical

NO· :

Nitric oxide

O −·2 :

Superoxide anion

GSH:

Glutathione

MDA:

Malondialdehyde

MnCl2·4H2O:

Manganese chloride

DCFH-DA:

2,7-Dichlorofluorescin-diacetate

SABC:

Strept avidin–biotin complex

DAB:

Diaminobenzidine

HE:

Hematoxylin and eosin

BSA:

Bovine serum albumin

DCF:

Dichlorofluorescein

PBS:

Phosphate-buffered saline

TCA:

Trichloroacetic acid

TBA:

Thiobarbituric acid

TEP:

Tetraethoxypropane

DTNB:

1,2-Dithio-bis-nitrobenzoic acid

IOD:

Integral optical density

PVDF:

Polyvinylidene difluoride

ANOVA:

One-way analysis of variance

bZIP:

Basic region leucine zipper

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for manganese. U.S. Department of Health and Human Services Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/tp151.pdf. Accessed Sept 2012

  • Ateşşahin A, Karahan I, Yilmaz S et al (2003) The effect of manganese chloride on gentamicin-induced nephrotoxicity in rats. Pharmacol Res 48(6):637–642

    Article  PubMed  Google Scholar 

  • Barhoumi R, Faske J, Liu X, et al. (2004) Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Brain Res Mol Brain Res 122(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Bowman AB, Kwakye GF, Hernández H et al (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol 25(4):191–203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordova FM, Aguiar AS Jr, Peres TV et al (2013) Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 87(7):1231–1244

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Xu Z, Xu B et al (2009) The protective effect of riluzole on manganese caused disruption of glutamate-glutamine cycle in rats. Brain Res 1289:106–117

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Avila DS, da Rocha JB et al (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62(5):575–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104(3):420–432

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2005) Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Center for Drug Evaluation and Research (CDER), Rockville

    Google Scholar 

  • Fu J, Woods CG, Yehuda-Shnaidman E et al (2010) Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect 118(6):864–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA et al (1998) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20(2–3):239–247

    Google Scholar 

  • Gunter TE, Gavin CE, Aschner M et al (2006) Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology 27(5):765–776

    Article  CAS  PubMed  Google Scholar 

  • Jiang JK, Ma X, Wu QY et al (2014) Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum. Neuroscience 268:169–179

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Hong SW, Zheng HM et al (2009) Melatonin downregulates nuclear erythroid 2-related factor 2 and nuclear factor-kappaB during prevention of oxidative liver injury in a dimethylnitrosamine model. J Pineal Res 47(2):173–183

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Hong SW, Zheng HM et al (2010) Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. J Pineal Res 48(23):239–250

    Article  CAS  PubMed  Google Scholar 

  • Kern CH, Smith DR (2011) Preweaning Mn exposure leads to prolonged astrocyte activation and lasting effects on the dopaminergic system in adult male rats. Synapse 65(6):532–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kern CH, Smith DR. (2011) Preweaning Mn exposure leads to prolonged astrocyte activation and lasting effects on the dopaminergic system in adult male rats. Synapse 65(6): 532-544.Kilic U, Kilic E, Tuzcu Z et al (2013) Melatonin suppresses cisplatin-induced nephrotoxicity via activation of Nrf-2/HO-1 pathway. Nutr Metab (Lond) 10(1):7

    Article  CAS  PubMed Central  Google Scholar 

  • Lee ES, Yin Z, Milatovic D et al (2009) Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicol Sci 110(1):156–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin CH, Huang JY, Ching CH, et al (2008) Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats. J Pineal Res 44(2): 205-213

  • Liu Y, Zhang L, Zhang H et al (2012) Exogenous melatonin modulates apoptosis in the mouse brain induced by high-LET carbon ion irradiation. J Pineal Res 52(1):47–56

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Magesh S, Chen Y, Hu L (2012) Small molecule modulators of Keap1–Nrf2–ARE pathway as potential preventive and therapeutic agents. Med Res Rev 32(4):687–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milatovic D, Gupta RC, Yu Y (2011) Protective effects of antioxidants and anti-inflammatory agents against manganese-induced oxidative damage and neuronal injury. Toxicol Appl Pharmacol 256(3):219–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kappaB and Nrf2 cascades. J Pineal Res 50(2):124–131

    CAS  PubMed  Google Scholar 

  • Nguyen T, Nioi P, Pickett CB (2009) The Nrf2–antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284(20):13291–13295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Normandin L, Hazell AS (2002) Manganese neurotoxicity: an update of pathophysiologic mechanisms. Metab Brain Dis 17(4):375–387

    Article  CAS  PubMed  Google Scholar 

  • Oszlánczi G, Vezér T, Sárközi L et al (2010) Functional neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol Environ Saf 73(8):2004–2009

    Article  PubMed  Google Scholar 

  • Prabhakaran K, Ghosh D, Chapman GD et al (2008) Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res Bull 76(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. Faseb J 22(3):659–661

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (2000) Melatonin: lowering the high price of free radicals. News Physiol Sci 15:246–250

    CAS  PubMed  Google Scholar 

  • Settivari R, VanDuyn N, LeVora J (2013) The Nrf2/SKN-1-dependent glutathione S-transferase pi homologue GST-1 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of manganism. Neurotoxicology 38:51–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villalba M, Martínez-Serrano A, Börner C et al (1992) NMDA-induced increase in [Ca2+]i and 45Ca2+ uptake in acutely dissociated brain cells derived from adult rats. Brain Res 570(1–2):347–353

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Ma C, Meng CJ et al (2012) Melatonin activates the Nrf2–ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 53(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Woods CG, Fu J, Xue P, et al. (2009) Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages. Toxicol Appl Pharmacol 238(1):27-36

  • Xu B, Wu SW, Lu CW et al (2013) Oxidative stress involvement in manganese-induced alpha-synuclein oligomerization in organotypic brain slice cultures. Toxicology 305:71–78

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Xu Z, Gao J et al (2008) In vitro effect of manganese chloride exposure on energy metabolism and oxidative damage of mitochondria isolated from rat brain. Environ Toxicol Pharmacol 26(2):232–236

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Zhang L, Xu Z et al (2013) Neurotoxic effects of iron overload under high glucose concentration. Neural Regen Res 8(36):3423

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Grants from the National Natural Science Foundation of China (No. 81302406) and the Specialized Research Fund of New Teachers for the Doctoral Program of Higher Education of China (20112104120017) supported this work financially.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zhu, J., Mi, C. et al. Melatonin Antagonizes Mn-Induced Oxidative Injury Through the Activation of Keap1–Nrf2–ARE Signaling Pathway in the Striatum of Mice. Neurotox Res 27, 156–171 (2015). https://doi.org/10.1007/s12640-014-9489-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9489-5

Keywords

Navigation