Skip to main content

Advertisement

Log in

PPARα Activation Attenuates Amyloid-β-Dependent Neurodegeneration by Modulating Endo G and AIF Translocation

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The accumulation of a large amount of amyloid-β (Aβ42) in brain neurons is one of the debilitating characteristics of Alzheimer’s disease. In this study, we determined the effects of peroxisome proliferator-activated receptor alpha (PPARα) activation on neuronal degeneration using a model of Aβ42-induced cytotoxicity. We found that 0.5 μM Aβ42 induced DNA damage and apoptosis in NT2N cells after 6 h of treatment. Co-treatment of Aβ42-treated cells with Wy14643, a PPARα ligand, significantly increased cell viability after 24 h compared with cells treated with Aβ42 alone. There were no differences in the protein levels of caspase-3, Bcl-2/Bax or p53 between cells treated with Aβ42 alone and those treated with both Aβ42 and Wy14643. However, the addition of Wy14643 significantly suppressed the Aβ42-induced upregulation of Endo G and AIF protein levels. Immunohistochemical analyses further demonstrated that Wy14643 reduced the expression of Endo G and AIF translocated from the cytoplasm into the nucleus, which occurred concomitantly with the decrease in DNA damage in Aβ42-treated cells. Our data clearly show that PPARα activation prevents DNA damage and neuronal cell apoptosis by decreasing the expression and translocation of AIF/Endo G to the nucleus in a caspase-3- and p53-independent pathway in the NT2N cell model. This role of PPARα in promoting neuron survival suggests a possible clinical application in treating Aβ42-associated neurotoxicity in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PPARα:

Peroxisome proliferator-activated receptor alpha

Aβ:

Amyloid-β

AD:

Alzheimer’s disease

AIF:

Apoptosis-inducing factor

Endo G:

Endonuclease G

DMSO:

Dimethyl sulfoxide

RA:

All-trans retinoic acid

DMEM:

Dulbecco’s modified Eagle’s medium

NT2N:

Post-mitotic neuronal cells

References

  • Abbott BD (2009) Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol 27:246–257

    Article  CAS  PubMed  Google Scholar 

  • Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103:285–293

    Article  CAS  PubMed  Google Scholar 

  • Aranha MM, Santos DM, Xavier JM, Low WC, Steer CJ, Sola S, Rodrigues CM (2010) Apoptosis-associated microRNAs are modulated in mouse, rat and human neural differentiation. BMC Genom 11:514

    Article  Google Scholar 

  • Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE (2004) Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 61:378–384

    Article  PubMed  Google Scholar 

  • Bento-Abreu A, Tabernero A, Medina JM (2007) Peroxisome proliferator-activated receptor-alpha is required for the neurotrophic effect of oleic acid in neurons. J Neurochem 103:871–881

    Article  CAS  PubMed  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137:354–366

    CAS  PubMed  Google Scholar 

  • Cao YJ, Shibata T, Rainov NG (2001) Hypoxia-inducible transgene expression in differentiated human NT2N neurons: a cell culture model for gene therapy of postischemic neuronal loss. Gene Ther 8:1357–1362

    Article  CAS  PubMed  Google Scholar 

  • Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3:269–283

    Article  CAS  PubMed  Google Scholar 

  • d’Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B, Azzi A, Marinari UM, Pronzato MA, Ricciarelli R (2005) Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 391:693–698

    Article  PubMed Central  PubMed  Google Scholar 

  • D’Agostino G, Russo R, Avagliano C, Cristiano C, Meli R, Calignano A (2012) Palmitoylethanolamide protects against the amyloid-beta25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology 37:1784–1792

    Article  PubMed Central  PubMed  Google Scholar 

  • Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053

    Article  CAS  PubMed  Google Scholar 

  • Eftekharzadeh B, Maghsoudi N, Khodagholi F (2010) Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons. Biochimie 92:245–253

    Article  CAS  PubMed  Google Scholar 

  • Fukui M, Choi HJ, Zhu BT (2012) Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis. Toxicol Appl Pharmacol 262:156–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR (2003) Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Glabe C (2001) Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer’s disease. J Mol Neurosci 17:137–145

    Article  CAS  PubMed  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  • Gray E, Ginty M, Kemp K, Scolding N, Wilkins A (2011) Peroxisome proliferator-activated receptor-alpha agonists protect cortical neurons from inflammatory mediators and improve peroxisomal function. Eur J Neurosci 33:1421–1432

    Article  PubMed  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O’Banion K, Klockgether T, Van Leuven F, Landreth GE (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128:1442–1453

    Article  PubMed  Google Scholar 

  • Higgins GC, Beart PM, Nagley P (2009) Oxidative stress triggers neuronal caspase-independent death: endonuclease G involvement in programmed cell death-type III. Cell Mol Life Sci 66:2773–2787

    Article  CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    Article  CAS  PubMed  Google Scholar 

  • Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, Vandersteen A, Segers-Nolten I, Van Der Werf K, Subramaniam V, Braeken D, Callewaert G, Bartic C, D’Hooge R, Martins IC, Rousseau F, Schymkowitz J, De Strooper B (2010) Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J 29:3408–3420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 5:481–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  • Li S, Basnakian A, Bhatt R, Megyesi J, Gokden N, Shah SV, Portilla D (2004) PPAR-alpha ligand ameliorates acute renal failure by reducing cisplatin-induced increased expression of renal endonuclease G. Am J Physiol Renal Physiol 287:F990–998

    Article  CAS  PubMed  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui T, Ramasamy K, Ingelsson M, Fukumoto H, Conrad C, Frosch MP, Irizarry MC, Yuan J, Hyman BT (2006) Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable abeta42 levels. J Neuropathol Exp Neurol 65:508–515

    Article  CAS  PubMed  Google Scholar 

  • Megiorni F, Mora B, Indovina P, Mazzilli MC (2005) Expression of neuronal markers during NTera2/cloneD1 differentiation by cell aggregation method. Neurosci Lett 373:105–109

    Article  CAS  PubMed  Google Scholar 

  • Moreno S, Farioli-Vecchioli S, Ceru MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123:131–145

    Article  CAS  PubMed  Google Scholar 

  • Nagothu KK, Bhatt R, Kaushal GP, Portilla D (2005) Fibrate prevents cisplatin-induced proximal tubule cell death. Kidney Int 68:2680–2693

    Article  CAS  PubMed  Google Scholar 

  • Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J 19:255–257

    CAS  PubMed  Google Scholar 

  • Pellicano M, Picone P, Cavalieri V, Carrotta R, Spinelli G, Di Carlo M (2009) The sea urchin embryo: a model to study Alzheimer’s beta amyloid induced toxicity. Arch Biochem Biophys 483:120–126

    Article  CAS  PubMed  Google Scholar 

  • Pleasure SJ, Lee VM (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res 35:585–602

    Article  CAS  PubMed  Google Scholar 

  • Ramanan S, Kooshki M, Zhao W, Hsu FC, Robbins ME (2008) PPARalpha ligands inhibit radiation-induced microglial inflammatory responses by negatively regulating NF-kappaB and AP-1 pathways. Free Radic Biol Med 45:1695–1704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, LaFerla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Santos MJ, Quintanilla RA, Toro A, Grandy R, Dinamarca MC, Godoy JA, Inestrosa NC (2005) Peroxisomal proliferation protects from beta-amyloid neurodegeneration. J Biol Chem 280:41057–41068

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, Heneka MT (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 23:9796–9804

    CAS  PubMed  Google Scholar 

  • Scuderi C, Valenza M, Stecca C, Esposito G, Carratu MR, Steardo L (2012) Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-alpha. J Neuroinflammation 9:49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scuderi C, Steardo L, Esposito G (2013) Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5Y cells through PPARgamma involvement. Phytother Res. doi:10.1002/ptr.5095

    Google Scholar 

  • Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  PubMed  Google Scholar 

  • Tabira T, Chui DH, Kuroda S (2002) Significance of intracellular Abeta42 accumulation in Alzheimer’s disease. Front Biosci 7:a44–49

    Article  CAS  PubMed  Google Scholar 

  • Tamagno E, Aragno M, Parola M, Parola S, Brignardello E, Boccuzzi G, Danni O (2000) NT2 neurons, a classical model for Alzheimer’s disease, are highly susceptible to oxidative stress. NeuroReport 11:1865–1869

    Article  CAS  PubMed  Google Scholar 

  • Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 35:352–358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tomiyama T (2010) Involvement of beta-amyloid in the etiology of Alzheimer’s disease. Brain Nerve 62:691–699

    CAS  PubMed  Google Scholar 

  • Uetsuki T, Takemoto K, Nishimura I, Okamoto M, Niinobe M, Momoi T, Miura M, Yoshikawa K (1999) Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J Neurosci 19:6955–6964

    CAS  PubMed  Google Scholar 

  • Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, Ferrario M, Borsani G, Spano P, Pizzi M (2006) NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 23:1711–1720

    Article  PubMed  Google Scholar 

  • Vorobjev IA, Uzbekov RE, Komarova Yu A, Alieva IB (2000) Gamma-tubulin distribution in interphase and mitotic cells upon stabilization and depolymerization of microtubules. Membr Cell Biol 14:219–235

    CAS  PubMed  Google Scholar 

  • Wang S, Rosengren L, Hamberger A, Haglid K (2001) Antisense inhibition of BCL-2 expression induces retinoic acid-mediated cell death during differentiation of human NT2N neurons. J Neurochem 76:1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Wang TS, Chung CH, Wang AS, Bau DT, Samikkannu T, Jan KY, Cheng YM, Lee TC (2002) Endonuclease III, formamidopyrimidine-DNA glycosylase, and proteinase K additively enhance arsenic-induced DNA strand breaks in human cells. Chem Res Toxicol 15:1254–1258

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Fang KM, Yang CS, Tzeng SF (2009) Reactive oxygen species-induced cell death of rat primary astrocytes through mitochondria-mediated mechanism. J Cell Biochem 107:933–943

    Article  CAS  PubMed  Google Scholar 

  • Wesson DW, Nixon RA, Levy E, Wilson DA (2011) Mechanisms of neural and behavioral dysfunction in Alzheimer’s disease. Mol Neurobiol 43:163–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White JA, Manelli AM, Holmberg KH, Van Eldik LJ, Ladu MJ (2005) Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiol Dis 18:459–465

    Article  CAS  PubMed  Google Scholar 

  • Wolf BA, Wertkin AM, Jolly YC, Yasuda RP, Wolfe BB, Konrad RJ, Manning D, Ravi S, Williamson JR, Lee VM (1995) Muscarinic regulation of Alzheimer’s disease amyloid precursor protein secretion and amyloid beta-protein production in human neuronal NT2N cells. J Biol Chem 270:4916–4922

    Article  CAS  PubMed  Google Scholar 

  • Yeh CH, Chen TP, Lee CH, Wu YC, Lin YM, Lin PJ (2006) Cardiomyocytic apoptosis following global cardiac ischemia and reperfusion can be attenuated by peroxisome proliferator-activated receptor alpha but not gamma activators. Shock 26:262–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zolezzi JM, Silva-Alvarez C, Ordenes D, Godoy JA, Carvajal FJ, Santos MJ, Inestrosa NC (2013) Peroxisome proliferator-activated receptor (PPAR) gamma and PPARalpha agonists modulate mitochondrial fusion–fission dynamics: relevance to reactive oxygen species (ROS)-related neurodegenerative disorders? PLoS One 8:e64019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research Grants from the China Medical University (CMU95-094) and the Taiwan Department of Health, China Medical University Hospital Cancer Research Center of Excellence (DOH102-TD-C-111-005). We are grateful for the technical assistance from Dr. Chingju Lin and Mr. Derek Yi in quantifying the intensity of confocal images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai Wen Chang.

Additional information

The Ya-Hsin Cheng and Shih-Wei Lai had equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, YH., Lai, SW., Chen, PY. et al. PPARα Activation Attenuates Amyloid-β-Dependent Neurodegeneration by Modulating Endo G and AIF Translocation. Neurotox Res 27, 55–68 (2015). https://doi.org/10.1007/s12640-014-9485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9485-9

Keywords

Navigation