Skip to main content

Antioxidant Activity, Cellular Bioavailability, and Iron and Calcium Management of Neuroprotective and Nonneuroprotective Flavones

Abstract

Few studies have been undertaken on the relationship of the structure of flavones and neuroprotection. Previously, we described the structural determinants of the neuroprotective activity of some natural flavones in cerebellar granule neurons in culture against an oxidative insult (H2O2). In the present work, we analyzed anti-oxidant activity, cellular iron, and Ca2+ levels and cellular bioavailability of neuroprotective and nonneuroprotective flavones in the same experimental paradigm. Oxidative cellular damage produced by H2O2 was prevented by all of the studied flavones with rather similar potency for all of them. Labile Iron Pool was neither affected by protective nor nonprotective flavones. Intracellular Ca2+ homeostasis was not affected by protective flavones either. Nonetheless, fisetin, the nonprotective flavone, decreased Ca2+ levels modifying Ca2+ homeostasis. Methylation of the catechol group, although weakens anti-oxidant capacity, keeps the neuroprotective capacity with less degradation and lower toxicity, constituting promising structural alternatives as leads for the design of neuroprotective molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Because they all share the basic backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one), the molecules studied can be primarily considered as flavones and as such are taken in this work, knowing that as hydroxyl flavones they can also be considered as flavonols.

References

  1. Almajano MP, Vila I, Gines S (2011) Neuroprotective effects of white tea against oxidative stress-induced toxicity in striatal cells. Neurotox Res 20:372–378

    CAS  PubMed  Article  Google Scholar 

  2. Andersen OM, Markham KR (2010) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  3. Arredondo F, Echeverry C, Abin-Carriquiry JA, Blasina F, Antúnez K, Jones DP, Go YM, Liang YL, Dajas F (2010) After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 49:738–747

    CAS  PubMed  Article  Google Scholar 

  4. Bors W, Heller W, Michel C, Saran M (1990) Radical chemistry of flavonoid antioxidants. Adv Exp Med Biol 264:165–170

    CAS  PubMed  Article  Google Scholar 

  5. Breuer W, Epsztejn S, Millgram P, Cabantchik ZI (1995) Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol 268:1354–1361

    Google Scholar 

  6. Chan EC, Pannangpetch P, Woodman OL (2000) Relaxation to flavones and flavonols in rat isolated thoracic aorta: mechanism of action and structure–activity relationships. Cardiovasc Pharmacol 35:326–333

    CAS  Article  Google Scholar 

  7. Chang H, Mi M, Ling W, Zhu J, Zhang Q, Wei N, Zhou Y, Tang Y, Yuan J (2008) Structurally related cytotoxic effects of flavonoids on human cancer cells in vitro. Arch Pharm Res 31:1137–1144

    CAS  PubMed  Article  Google Scholar 

  8. Clifford M (2001) A nomenclature for phenols with special reference to tea. Crit Rev Food Sci Nutr 41:393–397

    Google Scholar 

  9. Dajas F (2012) Life or death: neuroprotective and anticancer effects of quercetin. J Ethnopharmacol 143:383–396

    CAS  PubMed  Article  Google Scholar 

  10. Dajas F, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, Morquio A, Heizen H (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox Res 5:425–432

    PubMed  Article  Google Scholar 

  11. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    CAS  PubMed  Article  Google Scholar 

  12. Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med 15:353–363

    CAS  PubMed  Article  Google Scholar 

  13. Echeverry C, Arredondo F, Abin-Carriquiry JA, Midiwo JO, Ochieng C, Kerubo L, Dajas F (2010) Pretreatment with natural flavones and neuronal cell survival after oxidative stress: a structure–activity relationship study. J Agric Food Chem 58:2111–2115

    CAS  PubMed  Article  Google Scholar 

  14. Franklin JL, Johnson EM (1992) Suppression of programmed neuronal death by sustained elevation of cytoplasmic calcium. Trends Neurosci 15:501–508

    CAS  PubMed  Article  Google Scholar 

  15. García O, Massieu L (2001) Strategies for neuroprotection against l-trans-2,4-pyrrolidine dicarboxylate-induced neuronal damage during energy impairment in vitro. J Neurosci Res 64:418–428

    PubMed  Article  Google Scholar 

  16. Harborne JB (ed) (1994) The flavonoids, advances in research since 1986. Chapman and Hall, London

    Google Scholar 

  17. Heijnen CG, Haenen GR, Vekemans JA, Bast A (2001) Peroxynitrite scavenging of flavonoids: structure activity relationship. Environ Toxicol Pharmacol 10:199–206

    CAS  PubMed  Article  Google Scholar 

  18. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584

    CAS  PubMed  Article  Google Scholar 

  19. Juma BF, Yenese A, Midiwo JO, Waterman PG (2001) Flavones and phenylpropenoids in the surface exudate of Psiadia punctulata. Phytochemistry 57:571–574

    CAS  PubMed  Article  Google Scholar 

  20. Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res 531:81–92

    CAS  PubMed  Article  Google Scholar 

  21. Li S, Pu XP (2011) Neuroprotective effect of kaempferol against a 1- methyl-4-phenyl-1.2.3.6-tetrahydropyridine-induced mouse model of Parkinson´s disease. Biol Pharm Bull 34:1291–1296

    CAS  PubMed  Article  Google Scholar 

  22. Liu WB, Wang YP (2001) Magnesium lithospermate B inhibits hypoxia-induced calcium influx and nitric oxide release in endothelial cell. Acta Pharmacol Sin 22:1135–1142

    Google Scholar 

  23. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  PubMed  Google Scholar 

  24. Miller NJ, Rice-Evans C, Davies MJ, Gapinathan V, Milner A (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in prematures neonates. Clin Sci 84:407–412

    CAS  PubMed  Google Scholar 

  25. Mira L, Fernández MT, Santos M, Rocha R, Florencio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    CAS  PubMed  Article  Google Scholar 

  26. Mueller H, Kassack MU, Wiese M (2004) Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J Biomol Screen 9:506–515

    CAS  PubMed  Article  Google Scholar 

  27. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  28. Okimotoa Y, Watanabea A, Nikia E, Yamashitab T, Noguchia N (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474:137–140

    CAS  PubMed  Article  Google Scholar 

  29. Ossola B, Kääriäinen TM, Männistö PT (2009) The multiple faces of quercetin in neuroprotection. Expert Opin Drug Saf 8:397–409

    CAS  PubMed  Article  Google Scholar 

  30. Peng W, Kuo SM (2003) Flavonoid structure affects the inhibition of lipid peroxidation in Caco-2 intestinal cells at physiological concentrations. J Nutr 133:2184–2187

    CAS  PubMed  Google Scholar 

  31. Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  PubMed  Article  Google Scholar 

  32. Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8:797–807

    CAS  PubMed  Article  Google Scholar 

  33. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  PubMed  Article  Google Scholar 

  34. Simonyi A, Wang Q, Miller RL, Yusof M, Shelat PB, Sun AY, Sun GY (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection. Mol Neurobiol 31:135–147

    CAS  PubMed  Article  Google Scholar 

  35. Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–250

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Walle T (2009) Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int J Mol Sci 10:5002–5019

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Wang H, Joseph JA (1999) Structure–activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells. Free Radic Biol Med 27:683–694

    CAS  PubMed  Article  Google Scholar 

  38. Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    CAS  PubMed  Article  Google Scholar 

  39. Yenesew A, Irungu B, Derese S, Midiwo JO, Heydenreich M, Peter MG (2003) Two prenylated flavonoids from the stem bark of Erythrina burttii. Phytochemistry 63:445–448

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant L/ICA/139636 from the International Cooperation and Assistance Office of the OPCW (Organization for the Prohibition of Chemical Weapons), The Hague, The Netherlands. We thank Prof. Prem Ponka for the generous gift of the iron chelator SIH.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carolina Echeverry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Echeverry, C., Arredondo, F., Martínez, M. et al. Antioxidant Activity, Cellular Bioavailability, and Iron and Calcium Management of Neuroprotective and Nonneuroprotective Flavones. Neurotox Res 27, 31–42 (2015). https://doi.org/10.1007/s12640-014-9483-y

Download citation

Keywords

  • Flavonoids
  • Flavones
  • Neuroprotection
  • Anti-oxidation