Skip to main content

Advertisement

Log in

Intranasal and Subcutaneous Administration of Dopamine D3 Receptor Agonists Functionally Restores Nigrostriatal Dopamine in MPTP-Treated Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease with a hallmark motor defect caused by the death of dopaminergic neurons in the substantia nigra. Intranasal drug administration may be useful for Parkinson’s treatment because this route avoids first-pass metabolism and increases bioavailability in the brain. In this study, we investigated the neuroprotection/neurorestoration effect of dopamine D3 receptor (D3R) agonists administered via both intranasal and subcutaneous routes in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD mouse model. Furthermore, we employed D3R knock-out mice to validate the dependence on D3R signaling. We found that in wild-type mice, but not D3 receptor knockout mice, both intranasal and subcutaneous administration of D3R agonists rescue dopamine (DA) depletion in the striatum as well as DA neuronal death in the substantia nigra after MPTP treatment. Moreover, subcutaneous 7-OH-DPAT administration significantly improved gait performance (stride length and overall running speed) of MPTP-lesioned mice after 7 and 14 days of recovery. In addition, the distribution of D3 agonist 7-OH-DPAT was measured in designated brain areas by mass spectrometry analysis after subcutaneous and intranasal administration. Our data suggest that intranasal administration of D3R agonist would be a practical approach to treat PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

DA:

Dopamine

D3R:

Dopamine D3 receptor

References

  • Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG (2005) Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroeng Rehabil 2:20

    Article  PubMed  Google Scholar 

  • Anderson DW, Neavin T, Smith JA, Schneider JS (2001) Neuroprotective effects of pramipexole in young and aged MPTP-treated mice. Brain Res 905:44–53

    Article  PubMed  CAS  Google Scholar 

  • Antonini A, Tolosa E, Mizuno Y, Yamamoto M, Poewe WH (2009) A reassessment of risks and benefits of dopamine agonists in Parkinson’s disease. Lancet Neurol 8:37–929

    Article  Google Scholar 

  • Beare JE, Morehouse JR, DeVries WH, Enzmann GU, Burke DA, Magnuson DS, Whittemore SR (2009) Gait analysis in normal and spinal contused mice using the TreadScan system. J Neurotrauma 26:56–2045

    Article  Google Scholar 

  • Bennett JP Jr, Piercey MF (1999) Pramipexole–a new dopamine agonist for the treatment of Parkinson’s disease. J Neurol Sci 163:25–31

    Article  PubMed  CAS  Google Scholar 

  • Bhatt J, Subbaiah G, Singh S (2006) Liquid chromatography/tandem mass spectrometry method for simultaneous determination of risperidone and its active metabolite 9-hydroxyrisperidone in human plasma. Rapid Comm Mass Spectr 20:2109–2114

    Google Scholar 

  • Blagg J, Allerton CMN, Batchelor DVJ, Baxter AD, Burring DJ, Carr CL, Cook AS, Nichols CL, Phipps J, Sanderson VG, Verrier H, Wong S (2007) Design and synthesis of a functionally selective D3 agonist and its in vivo delivery via the intranasal route. Bioorg Med Chem Lett 17:6691–6696

    Google Scholar 

  • Bode M (2009) Dopamine agonist therapy in early Parkinson’s disease. A survey of a Cochrane review. Ugeskr Laeger 171:9–2996

    Google Scholar 

  • Budsberg SC, Verstraete MC, Soutas-Little RW (1987) Force plate analysis of the walking gait in healthy dogs. Am J Vet Res 48:8–915

    Google Scholar 

  • Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:57–3248

    Google Scholar 

  • Chen S, Zhang X, Yang D, Du Y, Li L, Li X, Ming M, Le W (2008) D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase- and JNK-dependent pathways. FEBS Lett 582:10–603

    Article  Google Scholar 

  • Clarke CE, Guttman M (2002) Dopamine agonist monotherapy in Parkinson’s disease. Lancet 360:9–1767

    Article  Google Scholar 

  • Cohen AH, Gans C (1975) Muscle activity in rat locomotion: movement analysis and electromyography of the flexors and extensors of the elbow. J Morphol 146:96–177

    Article  Google Scholar 

  • Danielyan L, Schafer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B, Verleysdonk S, Ayturan M, Buniatian GH, Gleiter CH, Frey WH (2009) Intranasal delivery of cells in the brain. Eur J Cell Biol 88:315–324

    Google Scholar 

  • Du F, Li R, Huang Y, Li X, Le W (2005) Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci 22:2422–2430

    Article  PubMed  Google Scholar 

  • Fernagut PO, Diguet E, Labattu B, Tison F (2002) A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods 113:123–130

    Article  PubMed  Google Scholar 

  • Hanson LR, Frey WH (2008) Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci 9:S3–S5

    Google Scholar 

  • Hausdorff JM (2009) Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos 19:026113

    Article  PubMed  Google Scholar 

  • Iida M, Miyazaki I, Tanaka K, Kabuto H, Iwata-Ichikawa E, Ogawa N (1999) Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 838:51–59

    Article  PubMed  CAS  Google Scholar 

  • Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56:3–17

    Article  PubMed  CAS  Google Scholar 

  • Inden M, Kitamura Y, Tamaki A, Yanagida T, Shibaike T, Yamamoto A, Takata K, Yasui H, Taira T, Ariga H, Taniguchi T (2009) Neuroprotective effect of the antiparkinsonian drug pramipexole against nigrostriatal dopaminergic degeneration in rotenone-treated mice. Neurochem Int 55:760–767

    Article  PubMed  CAS  Google Scholar 

  • Iravani MM, Haddon CO, Cooper JM, Jenner P, Schapira AH (2006) Pramipexole protects against MPTP toxicity in non-human primates. J Neurochem 96:1315–1321

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN, Millan MJ (2007) Dopamine D3 receptor agonists for protection and repair in Parkinson’s disease. Curr Opin Pharmacol 7:100–105

    Article  PubMed  CAS  Google Scholar 

  • Kalinderi K, Fidani L, Katsarou Z, Bostantjopoulou S (2011) Pharmacological treatment and the prospect of pharmacogenetics in Parkinson’s disease. Int J Clin Pract 65:1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Lao CL, Lu CS, Chen JC (2013) Dopamine D(3) receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia 61:475–489

    Article  PubMed  Google Scholar 

  • Mathison S, Nagilla R, Kompella UB (1998) Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 5:415–441

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa N, Maki M, Yasuhara T, Hara K, Yu G, Xu L, Kim KM, Morgan JC, Sethi KD, Borlongan CV (2007) Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned Parkinsonian rats. Brain Res 1160:113–123

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Jenner P, Brooks D (1998) Dopamine agonists and neuroprotection in Parkinson’s disease. Ann Neurol 44:S167–S174

    Article  PubMed  CAS  Google Scholar 

  • Piercey MF (1998) Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol 21:141–151

    PubMed  CAS  Google Scholar 

  • Pires A, Fortuna A, Alves G, Falcao A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 12:288–311

    PubMed  CAS  Google Scholar 

  • Prediger RD, Aguiar AS Jr, Rojas-Mayorquin AE, Figueiredo CP, Matheus FC, Ginestet L, Chevarin C, Bel ED, Mongeau R, Hamon M, Lanfumey L, Raisman-Vozari R (2010) Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotox Res 17:114–129

    Article  PubMed  CAS  Google Scholar 

  • Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR, Breitner JC, DeGroodt W, Mehta P, Craft S (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448

    Google Scholar 

  • Stevens J, Ploeger BA, van der Graaf PH, Danhof M, de Lange EC (2011) Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Dispos 39:2275–2282

    Article  PubMed  CAS  Google Scholar 

  • Thanvi B, Lo N, Robinson T (2007) Levodopa-induced dyskinesia in Parkinson’s disease: clinical features, pathogenesis, prevention and treatment. Postgrad Med J 83:384–388

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Eckman CB (2006) Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci 26:7272–7280

    Article  PubMed  Google Scholar 

  • Van Kampen JM, Hagg T, Robertson HA (2004) Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation. Eur J Neurosci 19:2377–2387

    Article  PubMed  Google Scholar 

  • Zou L, Jankovic J, Rowe DB, Xie W, Appel SH, Le W (1999) Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity. Life Sci 64:1275–1285

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chung Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lao, C.L., Kuo, YH., Hsieh, YT. et al. Intranasal and Subcutaneous Administration of Dopamine D3 Receptor Agonists Functionally Restores Nigrostriatal Dopamine in MPTP-Treated Mice. Neurotox Res 24, 523–531 (2013). https://doi.org/10.1007/s12640-013-9408-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-013-9408-1

Keywords

Navigation