Neurotoxicity Research

, Volume 24, Issue 4, pp 491–501 | Cite as

Altered Cytokine and BDNF Levels in Autism Spectrum Disorder

  • S. RicciEmail author
  • R. Businaro
  • F. Ippoliti
  • V. R. Lo Vasco
  • F. Massoni
  • E. Onofri
  • G. M. Troili
  • V. Pontecorvi
  • M. Morelli
  • M. Rapp Ricciardi
  • T. Archer
Original Article


The contribution of neuroimmune functioning and brain-derived neurotrophic factor (BDNF) to functional dysregulation in autism spectrum disorder was assessed in 29 patients under treatment in two specialized centers of Basilicata (Chiaromonte and Matera), Southern Italy, through analysis of serum levels of cytokines and BDNF. Elevated levels of the pro-inflammatory cytokine, including interleukin-1, interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α and BDNF were observed, regardless of age and gender. Comparisons were made with age- and gender-related healthy controls. The present findings reinforce current notions regarding immunoexcitotoxic mechanisms contributing to the pathophysiology of autistic disorder.


Autism Immune system Cytokines Handicap Immunoexcitotoxicity 



Research funded by REGIONE BASILICATA, ASP (Azienda Sanitaria Provinciale) Potenza, Italy—General Director Dott. Mario Marra; Center for Diet-Related diseases “G.Gioia”, CHIAROMONTE Hospital (PZ), ASP Potenza, Italy—Director Dott.ssa Rosa Trabace—Head of laboratory Dott.ssa Nicolina La Sala—Psychologist/Psychotherapist Dott.ssa Maria Tosti; ASP (Azienda Sanitaria Provinciale) Ospedale Chiaromonte/Lagonegro, Potenza, Italy—Pediatrician Dott. Rocco Orofino, MD—Childish Neuropsychiatrist Dott. Vincenzo D’Onofrio, MD—Administrative Manager Dott. Giacomo Chiarelli; ASP (Azienda Sanitaria Provinciale) Matera, Italy Hospital “Madonna delle Grazie” Department of Children and Adolescent Neuropsychiatry—Director U.O.C. Dott. Carlo Calzone, MD—Neuropsychiatrist Dott. Caterina Lattarulo, MD; Stella Maris Mediterraneo Foundation, ASP Potenza, Italy; Dr. Lars Göran Wallgren provided excellent technical assistance.


  1. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W (2011) Nutritional and metabolic status of children with autism vs neurotypical children, and the association with autism severity. Nutr Metab 8:34CrossRefGoogle Scholar
  2. Al-Ayadhi LY (2012) Relationship between sonic hedgehog protein, brain-derived neurotrophic factor and oxidative stress in autism spectrum disorders. Neurochem Res 37:394–400PubMedCrossRefGoogle Scholar
  3. Al-Ayadhi LY, Mostafa GA (2012) Elevated serum levels of interleukin-17A in children with autism. J Neuroinflamm 9:158CrossRefGoogle Scholar
  4. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders DSM-IV-TR, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  5. Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kourembanas S, Theoharides TC (2012) Perinatal stress, brain inflammation and risk of autism: review and proposal. BMC Pediatr 12:89. doi: 10.1186/1471-2431-12-89 PubMedCrossRefGoogle Scholar
  6. Archer T, Fredriksson A, Schütz E, Kostrzewa RM (2011) Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 20:69–83PubMedCrossRefGoogle Scholar
  7. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25:40–45PubMedCrossRefGoogle Scholar
  8. Besedovsky H, del Rey A, Sorkin E, Dinarello CA (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233:652–654PubMedCrossRefGoogle Scholar
  9. Blaylock RL (2008) A possible central mechanism in autism spectrum disorders, part 1. Altern Ther Health Med 14:46–53PubMedGoogle Scholar
  10. Blaylock RL (2009) A possible central mechanism in autism spectrum disorders, part 2: immunoexcitotoxicity. Altern Ther Health Med 15:60–67PubMedGoogle Scholar
  11. Blaylock RL, Maroon J (2011) Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy: a unifying hypothesis. Surg Neurol Int 2:107PubMedCrossRefGoogle Scholar
  12. Blaylock RL, Maroon J (2012) Natural plant products and extracts that reduce immunoexcitotoxicity-associated neurodegeneration and promote repair within the central nervous system. Surg Neurol Int 3:19PubMedCrossRefGoogle Scholar
  13. Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64:93–109PubMedCrossRefGoogle Scholar
  14. Bovolenta R, Zucchini S, Paradiso B, Rodi D, Merigo F, Navarro MG, Osculati F, Berto E, Marconi P, Marzola A, Fabene PF, Simonato M (2010) Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflamm 7:81–87CrossRefGoogle Scholar
  15. Brynskikh A, Warren T, Zhu J, Kipnis J (2008) Adaptive immunity affects learning behavior in mice. Brain Behav Immun 22:861–869PubMedCrossRefGoogle Scholar
  16. Buehler MR (2011) A proposed mechanism for autism: an aberrant neuroimmune response manifested as a psychiatric disorder. Med hypothes 76:863–870CrossRefGoogle Scholar
  17. Cacabelos R, Franco-Maside A, Alvarez XA (1991) Interleukin-1 in Alzheimer’s disease and multi-infarct dementia: neuropsychological correlations. Methods Find Exp Clin Pharmacol 13:703–708PubMedGoogle Scholar
  18. Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306:2001–2010PubMedCrossRefGoogle Scholar
  19. Essa MM, Braidy N, Vijayan KR, Subash S, Guillemin GJ (2013) Excitotoxicity in the pathogenesis of autism. Neurotox Res 23(4):393–400PubMedCrossRefGoogle Scholar
  20. Eurispes (2006) 18° Rapporto Italia, vol 8. Eurispes, p 245Google Scholar
  21. Fredriksson A, Stigsdotter IM, Hurtig A, Ewalds-Kvist B, Archer T (2011) Running wheel activity restores MPTP-induced functional deficits. J Neural Tranms 18:407–420CrossRefGoogle Scholar
  22. Garay PA, McAllister AK (2010) Novel roles for immune molecules in neural development: implications for neurodevelopmental disorders. Front Synaptic Neurosci 2:136PubMedCrossRefGoogle Scholar
  23. Garcia KL, Yu G, Nicolini C, Michalski B, Garzon DJ, Chiu VS, Tongiorgi E, Szatmari P, Fahnestock M (2012) Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. J Neuropathol Exp Neurol 71:289–297PubMedCrossRefGoogle Scholar
  24. Goines P, Van de Water J (2010) The immune system’s role in the biology of autism. Curr Opin Neurol 23:111–117PubMedCrossRefGoogle Scholar
  25. Green HF, Treacy E, Keohane AK, Sullivan AM, O’Keeffe GW, Nolan YM (2012) A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci 49:311–321PubMedCrossRefGoogle Scholar
  26. Hurley LL, Tizabi Y (2013) Neuroinflammation, neurodegeneration, and depression. Neurotox Res 23(2):131–144. doi: 10.1007/s12640-012-9348-1 PubMedCrossRefGoogle Scholar
  27. Johnson NL, Giarelli E, Lewis C, Rice CE (2013) Genomics and autism spectrum disorder. J Nurs Scholarsh 45(1):69–78. doi: 10.1111/j.1547-5069.2012.01483.x PubMedCrossRefGoogle Scholar
  28. Jyonouchi H, Sun S, Le H (2001) Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 120:170–179PubMedCrossRefGoogle Scholar
  29. Jyonouchi H, Sun S, Itokazu N (2002) Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 46:76–84PubMedCrossRefGoogle Scholar
  30. Kalkbrenner AE, Daniels JL, Chen JC, Poole C, Emch M, Morrissey J (2010) Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology 21:631–641PubMedCrossRefGoogle Scholar
  31. Lainhart JE, Lange N (2011) Increased neuron number and head size in autism. JAMA 306:2031–2032PubMedCrossRefGoogle Scholar
  32. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Bio Behav Rev 36:764–785CrossRefGoogle Scholar
  33. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207:111–116PubMedCrossRefGoogle Scholar
  34. Lintas C, Sacco R, Persico AM (2012) Genome-wide expression studies in autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiol Dis 45:57–68PubMedCrossRefGoogle Scholar
  35. McAllister AK, van de Water J (2009) Breaking boundaries in neural-immune interactions. Neuron 64:9–12PubMedCrossRefGoogle Scholar
  36. Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, Altaye M, Wills-Karp M (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172:198–205PubMedCrossRefGoogle Scholar
  37. Mostafa GA, Al-Ayadhi LY (2011a) The possible link between the elevated serum levels of neurokinin A and anti-ribosomal P protein antibodies in children with autism. J Neuroinflamm 8:180CrossRefGoogle Scholar
  38. Mostafa GA, Al-Ayadhi LY (2011b) A lack of association between hyperserotonemia and the increased frequency of serum anti-myelin basic protein auto-antibodies in autistic children. J Neuroinflamm 8:71CrossRefGoogle Scholar
  39. Mostafa GA, Al-Ayadhi LY (2012) The relationship between the increased frequency of serum antineuronal antibodies and the severity of autism in children. Eur J Paediatr Neurol 16(5):464–468PubMedCrossRefGoogle Scholar
  40. Mostafa GA, Shehab AA, Al-Ayadhi LY (2013) The link between some alleles on human leukocyte antigen system and autism in children. J Neuroimmunol 255(1–2):70–74. doi: 10.1016/j.jneuroim.2012.10.002 PubMedCrossRefGoogle Scholar
  41. Müller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12:988–1000PubMedCrossRefGoogle Scholar
  42. Murray PS, Holmes PV (2011) An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept. doi: 10.1155/2011/654085
  43. Onore C, Careaga M, Ashwood P (2012) The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun 26:383–392PubMedCrossRefGoogle Scholar
  44. Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 17:485–495PubMedCrossRefGoogle Scholar
  45. Petitto JM, Huang Z, Meola D, Ha GK, Dauer D (2012) Interleukin-2 and the septohippocampal system: intrinsic actions and autoimmune processes relevant to neuropsychiatric disorders. Methods Mol Biol 829:433–443PubMedCrossRefGoogle Scholar
  46. Pucak ML, Carroll KA, Kerr DA, Kaplin AI (2007) Neuropsychiatric manifestations of depression in multiple sclerosis: neuroinflammatory, neuroendocrine, and neurotrophic mechanisms in the pathogenesis of immune-mediated depression. Dialogues Clin Neurosci 9:125–139PubMedGoogle Scholar
  47. Ramos PS, Sajuthi S, Langefeld CD, Walker SJ (2012) Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder. Mol Autism 3:4PubMedCrossRefGoogle Scholar
  48. Ray B, Long JM, Sokol DK, Lahiri DK (2011) Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 6:e20405PubMedCrossRefGoogle Scholar
  49. Ricci S, Fuso A, Ippoliti F, Businaro R (2012) Stress-induced cytokines and neuronal dysfunction in Alzheimer’s disease. J Alzheimers Dis 28:11–24PubMedGoogle Scholar
  50. Rook GA, Lowry CA, Raison CL (2011) Lymphocytes in neuroprotection, cognition and emotion: is intolerance really the answer? Brain Behav Immun 25:591–601PubMedCrossRefGoogle Scholar
  51. Sacco R, Curatolo P, Manzi B, Militerni R, Bravaccio C, Frolli A, Lenti C, Saccani M, Elia M, Reichelt KL, Pascucci T, Puglisi-Allegra S, Persico AM (2010) Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Res 3:237–252PubMedCrossRefGoogle Scholar
  52. Sokol DK, Chen D, Farlow MR, Dunn DW, Maloney B, Zimmer JA, Lahiri DK (2006) High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J Child Neurol 21:444–449PubMedGoogle Scholar
  53. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81PubMedCrossRefGoogle Scholar
  54. Vezzani A, Friedman A (2011) Brain inflammation as a biomarker in epilepsy. Biomark Med 5:607–614PubMedCrossRefGoogle Scholar
  55. Weinstein AA, Deuster PA, Francis JL, Bonsall RW, Tracy RP, Kop WJ (2010) Neurohormonal and inflammatory hyper-responsiveness to acute mental stress in depression. Biol Psychol 84:228–234PubMedCrossRefGoogle Scholar
  56. Ziats MN, Rennert OM (2011) Expression profiling of autism candidate genes during human brain development implicates central immune signaling pathways. PLoS One 6:e24691PubMedCrossRefGoogle Scholar
  57. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–729PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Ricci
    • 1
    Email author
  • R. Businaro
    • 2
  • F. Ippoliti
    • 3
  • V. R. Lo Vasco
    • 4
  • F. Massoni
    • 1
  • E. Onofri
    • 1
  • G. M. Troili
    • 1
  • V. Pontecorvi
    • 2
  • M. Morelli
    • 2
  • M. Rapp Ricciardi
    • 5
    • 6
  • T. Archer
    • 5
    • 6
  1. 1.Department of Anatomy, Histology, Legal Medicine and OrthopaedicsSapienza UniversityRomeItaly
  2. 2.Department of Medico-Surgical Sciences and BiotechnologiesSapienza UniversityLatinaItaly
  3. 3.Department of Experimental MedicineSapienza UniversityRomeItaly
  4. 4.Department Organi di SensoSapienza UniversityRomeItaly
  5. 5.Department of PsychologyUniversity of GothenburgGothenburgSweden
  6. 6.Department of Psychology, Education and Sports ScienceLinnea UniversityKalmarSweden

Personalised recommendations