Skip to main content

Advertisement

Log in

Behavioral Responses to Acute and Sub-chronic Administration of the Synthetic Cannabinoid JWH-018 in Adult Mice Prenatally Exposed to Corticosterone

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Recent data indicate that both availability and consumption of synthetic and natural psychoactive substances, marketed under the name of “legal highs”, has increased. Among them, the aminoalkylindole-derivative JWH-018 is widely distributed due to its capability of binding the cannabinoid receptors CB1 and CB2 thereby mimicking the effects of classical drug agonists. To address whether the behavioral effects of the synthetic compound JWH-018 are similar to those induced by classical cannabinoid agonists, we investigated, in outbred CD1 mice, the consequences of its acute and sub-chronic administration (0, 0.03, 0.1, or 0.3 mg/kg, IP) at the level of body temperature, pain perception, general locomotion, and anxiety. In order to address whether the exposure to precocious stressors-modified individual reactivity to this psychoactive substance, we also investigated its effects in adult mice previously exposed to prenatal stress in the form of corticosterone supplementation in the maternal drinking water (33 or 100 mg/L). In the absence of major effects on motor coordination, JWH-018-reduced body temperature, locomotion and pain reactivity, and increased indices of anxiety. Prenatal corticosterone administration-reduced individual sensitivity to the effects of JWH-018 administration in all the aforementioned parameters. This altered response is not due to variations in JWH-018 metabolism. Present data support the hypothesis that precocious stress may affect, in the long-term, the functional status, and reactivity of the endocannabinoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal S, Shavalian B, Kim E, Rawls SM (2009) Agmatine enhances cannabinoid action in the hot-plate assay of thermal nociception. Pharmacol Biochem Behav 93(4):426–432. doi:10.1016/j.pbb.2009.06.004

    Article  PubMed  CAS  Google Scholar 

  • Ahmadzadeh R, Saboory E, Roshan-Milani S, Pilehvarian AA (2011) Predator and restraint stress during gestation facilitates pilocarpine-induced seizures in prepubertal rats. Dev Psychobiol 53(8):806–812

    Article  PubMed  Google Scholar 

  • Atwood BK, Huffman J, Straiker A, Mackie K (2010) JWH018, a common constituent of ‘spice’ herbal blends, is a potent and efficacious cannabinoid CB receptor agonist. Br J Pharmacol 160(3):585–593. doi:10.1111/j.1476-5381.2009.00582.x

    Article  PubMed  CAS  Google Scholar 

  • Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, Showalter VM, Abood ME, Martin BR (2000) Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB(1) and CB(2) receptor binding. Drug Alcohol Depend 60(2):133–140

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (1995a) Fetal origins of coronary heart disease. BMJ 311(6998):171–174

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (1995b) Intrauterine programming of adult disease. Mol Med Today 1(9):418–423. doi:S1357-4310(95)90793-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ, Gluckman PD, Robinson JS (1995) Conference report: fetal origins of adult disease–report of the First International Study Group, Sydney, 29–30 October 1994. Placenta 16(3):317–320

    Article  PubMed  CAS  Google Scholar 

  • Beydoun H, Saftlas AF (2008) Physical and mental health outcomes of prenatal maternal stress in human and animal studies: a review of recent evidence. Paediatr Perinat Epidemiol 22(5):438–466

    Article  PubMed  Google Scholar 

  • Brake WG, Zhang TY, Diorio J, Meaney MJ, Gratton A (2004) Influence of early postnatal rearing conditions on mesocorticolimbic dopamine and behavioural responses to psychostimulants and stressors in adult rats. Eur J Neurosci 19(7):1863–1874

    Article  PubMed  Google Scholar 

  • Brents LK, Reichard EE, Zimmerman SM, Moran JH, Fantegrossi WE, Prather PL (2011) Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity. PLoS ONE 6(7):e21917. doi:10.1371/journal.pone.0021917

    Article  PubMed  CAS  Google Scholar 

  • Burillo-Putze G, Diaz BC, Pazos JL, Mas PM, Miro O, Puiguriguer J, Dargan P (2011) Emergent drugs (I): smart drugs. An Sist Sanit Navar 34(2):263–274

    Article  PubMed  CAS  Google Scholar 

  • Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V (2009) Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad Sci USA 106(12):4888–4893

    Article  PubMed  CAS  Google Scholar 

  • Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res 134(1–2):49–57

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    Article  PubMed  CAS  Google Scholar 

  • De Vry J, Jentzsch KR, Kuhl E, Eckel G (2004) Behavioral effects of cannabinoids show differential sensitivity to cannabinoid receptor blockade and tolerance development. Behav Pharmacol 15(1):1–12

    Article  PubMed  Google Scholar 

  • Dell’Omo G, Vannoni E, Vyssotski AL, Di Bari MA, Nonno R, Agrimi U, Lipp HP (2002) Early behavioural changes in mice infected with BSE and scrapie: automated home cage monitoring reveals prion strain differences. Eur J Neurosci 16(4):735–742

    Article  PubMed  Google Scholar 

  • Dewey WL (1986) Cannabinoid pharmacology. Pharmacol Rev 38:151–178

    Google Scholar 

  • Dickerson PA, Lally BE, Gunnel E, Birkle DL, Salm AK (2005) Early emergence of increased fearful behavior in prenatally stressed rats. Physiol Behav 86(4):586–593

    Article  PubMed  CAS  Google Scholar 

  • Dobkin PL, Tremblay RE, Sacchitelle C (1997) Predicting boys’ early-onset substance abuse from father’s alcoholism, son’s disruptiveness, and mother’s parenting behavior. J Consult Clin Psychol 65(1):86–92

    Article  PubMed  CAS  Google Scholar 

  • Fattore L, Fratta W (2011) Beyond THC: the new generation of cannabinoid designer drugs. Front Behav Neurosci 5:60

    Google Scholar 

  • File SE (2001) Factors controlling measures of anxiety and responses to novelty in the mouse. Behav Brain Res 125(1–2):151–157

    Article  PubMed  CAS  Google Scholar 

  • Fitton AG, Pertwee RG (1982) Changes in body temperature and oxygen consumption rate of conscious mice produced by intrahypothalamic and intracerebroventricular injections of delta 9-tetrahydrocannabinol. Br J Pharmacol 75(2):409–414

    Article  PubMed  CAS  Google Scholar 

  • Fride E, Perchuk A, Hall FS, Uhl GR, Onaivi ES (2006) Behavioral methods in cannabinoid research. Methods Mol Med 123:269–290

    PubMed  CAS  Google Scholar 

  • Frye CA, Paris JJ, Osborne DM, Campbell JC, Kippin TE (2011) Prenatal stress alters progestogens to mediate susceptibility to sex-typical, stress-sensitive disorders, such as drug abuse: a review. Front Psychiatry 2:52

    Article  PubMed  Google Scholar 

  • Gerra G, Leonardi C, Cortese E, Zaimovic A, Dell’agnello G, Manfredini M, Somaini L, Petracca F, Caretti V, Raggi MA, Donnini C (2009) Childhood neglect and parental care perception in cocaine addicts: relation with psychiatric symptoms and biological correlates. Neurosci Biobehav Rev 33(4):601–610

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Bakos N, Szirmay M, Ledent C, Freund TF (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 16(7):1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Szirmai M, Varga B, Ledent C, Freund TF (2005) Cannabinoid CB1 receptor dependent effects of the NMDA antagonist phencyclidine in the social withdrawal model of schizophrenia. Behav Pharmacol 16(5–6):415–422

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Feldon J, Pryce CR (2009) Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm Behav 56(4):364–375. doi:10.1016/j.yhbeh.2009.07.003

    Article  PubMed  CAS  Google Scholar 

  • Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49(12):1023–1039

    Article  PubMed  CAS  Google Scholar 

  • Herrenkohl LR, Ribary U, Schlumpf M, Lichtensteiger W (1988) Maternal stress alters monoamine metabolites in fetal and neonatal rat brain. Experientia 44(5):457–459

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2006) Increased sensitivity to restraint stress and novelty-induced emotionality following long-term, high dose cannabinoid exposure. Psychoneuroendocrinology 31(4):526–536. doi:10.1016/j.psyneuen.2005.11.010

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Gorzalka BB (2009) The endocannabinoid system and the treatment of mood and anxiety disorders. CNS Neurol Disord 8(6):451–458

    Article  CAS  Google Scholar 

  • Hill MN, McEwen BS (2009) Endocannabinoids: the silent partner of glucocorticoids in the synapse. Proc Natl Acad Sci USA 106(12):4579–4580

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, McEwen BS (2010) Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog Neuropsychopharmacol Biol Psychiatry 34(5):791–797

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, Karatsoreos IN, Hillard CJ, McEwen BS (2010) Rapid elevations in limbic endocannabinoid content by glucocorticoid hormones in vivo. Psychoneuroendocrinology 35(9):1333–1338

    Article  PubMed  CAS  Google Scholar 

  • Hill MN, McLaughlin RJ, Pan B, Fitzgerald ML, Roberts CJ, Lee TT, Karatsoreos IN, Mackie K, Viau V, Pickel VM, McEwen BS, Liu QS, Gorzalka BB, Hillard CJ (2011) Recruitment of prefrontal cortical endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J Neurosci 31(29):10506–10515

    Article  PubMed  CAS  Google Scholar 

  • Huffman JW, Zengin G, Wu MJ, Lu J, Hynd G, Bushell K, Thompson AL, Bushell S, Tartal C, Hurst DP, Reggio PH, Selley DE, Cassidy MP, Wiley JL, Martin BR (2005) Structure-activity relationships for 1-alkyl-3-(1-naphthoyl)indoles at the cannabinoid CB(1) and CB(2) receptors: steric and electronic effects of naphthoyl substituents. New highly selective CB(2) receptor agonists. Bioorg Med Chem 13(1):89–112

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Rea M, Morley-Fletcher S, Di Carlo S, Bacosi A, De Simone R, Bertini M, Pacifici R (2004) Beneficial effects of enriched environment on adolescent rats from stressed pregnancies. Eur J Neurosci 20(6):1655–1664

    Article  PubMed  Google Scholar 

  • Li H, Li X, Jia N, Cai Q, Bai Z, Chen R, Song T, Zhu Z, Liu J (2008) NF-kappaB regulates prenatal stress-induced cognitive impairment in offspring rats. Behav Neurosci 122(2):331–339

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1991) Spinal and supraspinal components of cannabinoid-induced antinociception. The Journal of pharmacology and experimental therapeutics 258(2):517–523

    PubMed  CAS  Google Scholar 

  • Luszczki JJ, Florek-Luszczki M (2012) Synergistic interaction of pregabalin with the synthetic cannabinoid WIN 55,212-2 mesylate in the hot-plate test in mice: an isobolographic analysis. Pharmacol Rep 64(3):723–732

    PubMed  CAS  Google Scholar 

  • Lyons DM, Macrì S (2011) Resilience and adaptive aspects of stress in neurobehavioral development. Neurosci Biobehav Rev 35(7):1451

    Article  PubMed  Google Scholar 

  • Maccari S, Morley-Fletcher S (2007) Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology 32(Suppl 1):S10–S15

    Article  PubMed  CAS  Google Scholar 

  • Macrì S, Laviola G (2004) Single episode of maternal deprivation and adult depressive profile in mice: interaction with cannabinoid exposure during adolescence. Behav Brain Res 154(1):231–238

    Article  PubMed  Google Scholar 

  • Macrì S, Wurbel H (2006) Developmental plasticity of HPA and fear responses in rats: a critical review of the maternal mediation hypothesis. Horm Behav 50(5):667–680

    Article  PubMed  Google Scholar 

  • Macrì S, Pasquali P, Bonsignore LT, Pieretti S, Cirulli F, Chiarotti F, Laviola G (2007) Moderate neonatal stress decreases within-group variation in behavioral, immune and HPA responses in adult mice. PLoS ONE 2(10):e1015

    Article  PubMed  Google Scholar 

  • Macrì S, Ceci C, Canese R, Laviola G (2012) Prenatal stress and peripubertal stimulation of the endocannabinoid system differentially regulate emotional responses and brain metabolism in mice. PLoS ONE 7(7):e41821. doi:10.1371/journal.pone.0041821

    Article  PubMed  Google Scholar 

  • Marco EM, Laviola G (2012) The endocannabinoid system in the regulation of emotions throughout lifespan: a discussion on therapeutic perspectives. J Psychopharmacol 26(1):150–163. doi:10.1177/0269881111408459

    Article  PubMed  CAS  Google Scholar 

  • Marin S, Marco E, Biscaia M, Fernandez B, Rubio M, Guaza C, Schmidhammer H, Viveros MP (2003) Involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats. Pharmacol Biochem Behav 74(3):649–656

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11(12):4213–4225

    Article  PubMed  CAS  Google Scholar 

  • Martin BR, Balster RL, Razdan RK, Harris LS, Dewey WL (1981) Behavioral comparisons of the stereoisomers of tetrahydrocannabinols. Life Sci 29:565–574

    Google Scholar 

  • McDonald AJ, Mascagni F (2001) Localization of the CB1 type cannabinoid receptor in the rat basolateral amygdala: high concentrations in a subpopulation of cholecystokinin-containing interneurons. Neuroscience 107(4):641–652

    Article  PubMed  CAS  Google Scholar 

  • Morley-Fletcher S, Puopolo M, Gentili S, Gerra G, Macchia T, Laviola G (2004) Prenatal stress affects 3,4-methylenedioxymethamphetamine pharmacokinetics and drug-induced motor alterations in adolescent female rats. Eur J Pharmacol 489(1–2):89–92. doi:10.1016/j.ejphar.2004.02.028

    Article  PubMed  CAS  Google Scholar 

  • Ognibene E, Bovicelli P, Adriani W, Saso L, Laviola G (2008) Behavioral effects of 6-bromoflavanone and 5-methoxy-6,8-dibromoflavanone as anxiolytic compounds. Prog Neuropsychopharmacol Biol Psychiatry 32(1):128–134

    Article  PubMed  CAS  Google Scholar 

  • Ouagazzal AM, Kenny PJ, File SE (1999) Modulation of behaviour on trials 1 and 2 in the elevated plus-maze test of anxiety after systemic and hippocampal administration of nicotine. Psychopharmacology 144(1):54–60

    Article  PubMed  CAS  Google Scholar 

  • Palmer AK, Ulbrich BC (1997) The cult of culling. Fundamental and applied toxicology : official journal of the Society of Toxicology 38(1):7–22

    Article  CAS  Google Scholar 

  • Parker KJ, Maestripieri D (2011) Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates. Neurosci Biobehav Rev 35(7):1466–1483. doi:10.1016/j.neubiorev.2010.09.003

    Article  PubMed  Google Scholar 

  • Patel S, Hillard CJ (2006) Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. The Journal of pharmacology and experimental therapeutics 318(1):304–311. doi:10.1124/jpet.106.101287

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Cravatt BF, Hillard CJ (2005) Synergistic interactions between cannabinoids and environmental stress in the activation of the central amygdala. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 30(3):497–507. doi:10.1038/sj.npp.1300535

    Article  CAS  Google Scholar 

  • Patton GC, Coffey C, Carlin JB, Degenhardt L, Lynskey M, Hall W (2002) Cannabis use and mental health in young people: cohort study. BMJ 325(7374):1195–1198

    Article  PubMed  Google Scholar 

  • Pertwee RG (1985) Effects of cannabinoids on thermoregulation: a brief review. In: Harvey D, Paton SW, Nahas G (eds) Marihuana ‘84: proceedings of the Oxford Symposium on Cannabis I. Oxford, pp 263-277

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    Google Scholar 

  • Poklis JL, Amira D, Wise LE, Wiebelhaus JM, Haggerty BJ, Poklis A (2012) Detection and disposition of JWH-018 and JWH-073 in mice after exposure to “Magic Gold” smoke. Forensic Sci Int

  • Ramos A (2008) Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci 29(10):493–498. doi:10.1016/j.tips.2008.07.005

    Article  PubMed  CAS  Google Scholar 

  • Rubino T, Sala M, Vigano D, Braida D, Castiglioni C, Limonta V, Guidali C, Realini N, Parolaro D (2007) Cellular mechanisms underlying the anxiolytic effect of low doses of peripheral Delta9-tetrahydrocannabinol in rats. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 32(9):2036–2045. doi:10.1038/sj.npp.1301330

    Article  CAS  Google Scholar 

  • Rutkowska M, Jamontt J, Gliniak H (2006) Effects of cannabinoids on the anxiety-like response in mice. Pharmacological reports : PR 58(2):200–206

    PubMed  CAS  Google Scholar 

  • Salomon S, Bejar C, Schorer-Apelbaum D, Weinstock M (2011) Corticosterone mediates some but not other behavioural changes induced by prenatal stress in rats. J Neuroendocrinol 23(2):118–128

    Article  PubMed  CAS  Google Scholar 

  • Scherma M, Panlilio LV, Fadda P, Fattore L, Gamaleddin I, Le Foll B, Justinova Z, Mikics E, Haller J, Medalie J, Stroik J, Barnes C, Yasar S, Tanda G, Piomelli D, Fratta W, Goldberg SR (2008) Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. The Journal of pharmacology and experimental therapeutics 327(2):482–490. doi:10.1124/jpet.108.142224

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Enthoven L, van Woezik JH, Levine S, de Kloet ER, Oitzl MS (2004) The dynamics of the hypothalamic-pituitary-adrenal axis during maternal deprivation. J Neuroendocrinol 16(1):52–57

    Article  PubMed  CAS  Google Scholar 

  • Schneir AB, Cullen J, Ly BT (2011) “Spice” girls: synthetic cannabinoid intoxication. J Emerg Med 40(3):296–299

    Article  PubMed  Google Scholar 

  • Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61(1):59–64

    Article  PubMed  CAS  Google Scholar 

  • Smith PB, Compton DR, Welch SP, Razdan RK, Mechoulam R, Martin BR (1994) The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. The Journal of pharmacology and experimental therapeutics 270(1):219–227

    PubMed  Google Scholar 

  • Suarez J, Llorente R, Romero-Zerbo SY, Mateos B, Bermudez-Silva FJ, de Fonseca FR, Viveros MP (2009) Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats. Hippocampus 19(7):623–632

    Article  PubMed  CAS  Google Scholar 

  • Suarez J, Rivera P, Llorente R, Romero-Zerbo SY, Bermudez-Silva FJ, de Fonseca FR, Viveros MP (2010) Early maternal deprivation induces changes on the expression of 2-AG biosynthesis and degradation enzymes in neonatal rat hippocampus. Brain Res 1349:162–173

    Article  PubMed  CAS  Google Scholar 

  • Vallee M, Mayo W, Dellu F, Le Moal M, Simon H, Maccari S (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17(7):2626–2636

    PubMed  CAS  Google Scholar 

  • Viveros MP, Llorente R, Moreno E, Marco EM (2005) Behavioural and neuroendocrine effects of cannabinoids in critical developmental periods. Behav Pharmacol 16(5–6):353–362

    Article  PubMed  CAS  Google Scholar 

  • Ward HE, Johnson EA, Salm AK, Birkle DL (2000) Effects of prenatal stress on defensive withdrawal behavior and corticotropin releasing factor systems in rat brain. Physiol Behav 70(3–4):359–366

    Article  PubMed  CAS  Google Scholar 

  • Weinstock M (2005) The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun 19(4):296–308

    Article  PubMed  CAS  Google Scholar 

  • Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32(6):1073–1086

    Article  PubMed  CAS  Google Scholar 

  • Welberg LA, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Wiebelhaus JM, Poklis JL, Poklis A, Vann RE, Lichtman AH, Wise LE (2012) Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic effects in mice. Drug Alcohol Depend 126(3):316–323. doi:10.1016/j.drugalcdep.2012.05.034

    Article  PubMed  CAS  Google Scholar 

  • Wiley JL, Compton DR, Dai D, Lainton JA, Phillips M, Huffman JW, Martin BR (1998) Structure-activity relationships of indole- and pyrrole-derived cannabinoids. J Pharmacol Exp Ther 285:995–1004

    Google Scholar 

  • Wiley JL, Smith FL, Razdan RK, Dewey WL (2005) Task specificity of cross-tolerance between Delta9-tetrahydrocannabinol and anandamide analogs in mice. Eur J Pharmacol 510(1–2):59–68

    Article  PubMed  CAS  Google Scholar 

  • Wiley JL, Marusich JA, Martin BR, Huffman JW (2012) 1-Pentyl-3-phenylacetylindoles and JWH-018 share in vivo cannabinoid profiles in mice. Drug Alcohol Depend 123(1–3):148–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant ‘‘ECS-EMOTION: Resilience’’ to G.L. and S.M. and by the Grant “National Early Warning System” to T.M. from the Department for Antidrug Policies c/o Presidency of the Council of Ministers, Italy. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Laviola.

Additional information

Simone Macrì and Lara Lanuzza equally contributed to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macrì, S., Lanuzza, L., Merola, G. et al. Behavioral Responses to Acute and Sub-chronic Administration of the Synthetic Cannabinoid JWH-018 in Adult Mice Prenatally Exposed to Corticosterone. Neurotox Res 24, 15–28 (2013). https://doi.org/10.1007/s12640-012-9371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9371-2

Keywords

Navigation