Skip to main content
Log in

Potassium Depolarization and Raised Calcium Induces α-Synuclein Aggregates

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

α-Synuclein is the key aggregating protein in Parkinson’s disease (PD), which is characterized by cytoplasmic protein inclusion bodies, termed Lewy bodies, thought to increase longevity of the host neuron by sequestering toxic soluble α-synuclein oligomers. Previous post-mortem studies have shown relative sparing of neurons in PD that are positive for the Ca2+ buffering protein, calbindin, and recent cell culture and in vitro studies have shown that α-synuclein aggregation can be induced by Ca2+. We hypothesized that depolarization with potassium resulting in raised Ca2+ in a PD cell culture model will lead to the formation of α-synuclein protein aggregates and that the intracellular Ca2+ buffer, BAPTA-AM, may suppress their formation. Live cell fluorescence microscopy was performed to monitor changes in intracellular free calcium in HEK293T, SH-SY5Y neuroblastoma or stably transfected HEK293T/α-synuclein cells. Raised intracellular free Ca2+ was consistently observed in cells treated with KCl, but not controls. Immunohistochemistry analysis on cells 48–72 h after K+ treatment revealed two subsets of cells with either large (>2 μm), perinuclear α-synuclein aggregates or multiple smaller (<2 μm), cytoplasmic accumulations. Cells pre-treated with varying concentrations of trimethadione (TMO), a calcium channel blocker, showed suppression of the Ca2+ transient following KCl treatment and no α-synuclein aggregates at TMO concentrations >5 μM. Quantitative analysis revealed a significant increase in the number of cells bearing α-synuclein cytoplasmic inclusions in both HEK293T/α-synuclein and SHSY-5Y cells when transient intracellular raised Ca2+ was induced (p = 0.001). BAPTA-AM pre-loading significantly suppressed α-synuclein aggregates (p = 0.001) and the intracellular free Ca2+ transient. This study indicates that raised intracellular Ca2+ mediated by K+ depolarization can lead to α-synuclein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LB:

Lewy body

MTOC:

Microtubule organizing centre

PD:

Parkinson’s disease

TMO:

Trimethadione

UPS:

Ubiquitin proteasome system

References

  • Berjukow S, Döring F, Froschmayr M, Grabner M, Glossmann H, Hering S (1996) Endogenous calcium channels in human embryonic kidney (HEK293) cells. Br J Pharmacol 118(3):748–754

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Tsien RW (1995) Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967). Mol Pharm 48:540–549

    CAS  Google Scholar 

  • Breydo L, Wu JW, Uversky VN (2012) Α-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285

    Article  PubMed  CAS  Google Scholar 

  • Bruseell R Jr, Eliezer D (2003) A structural and functional role for 11-mer repeats in alpha synuclein and other exchangeable lipid binding proteins. J Mol Biol 329:763–778

    Article  Google Scholar 

  • Chemin J, Monteil A, Perez-Reyes E, Nargeot J, Lory P (2001) Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J 70:7033–7040

    Article  Google Scholar 

  • Chin LS, Olzmann JA, Li L (2010) Parkin-mediated ubiquitin signalling in aggresome formation and autophagy. Biochem Soc Trans 38:144–149

    Article  PubMed  CAS  Google Scholar 

  • Conway K, Lee S, Rochet J, Ding T, Williamson R, Lansbury P Jr (2000) Acceleration of oligomerization, not fibrilization, is a shared property of both α synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 99:571–576

    Article  Google Scholar 

  • Cookson MR (2009) alpha-Synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  PubMed  Google Scholar 

  • Corrales A, Montoya GJV, Sutachan JJ, Cornillez-Ty G, Garavito-Aguilar Z, Xu F, Blanck TJJ, Recio-Pinto E (2005) Transient increases in extracellular K+ produce two pharmacological distinct cytosolic Ca2+ transients. Brain Res 1031:174–184

    Article  PubMed  CAS  Google Scholar 

  • Desai A et al (2006) Human neuroblastoma (SH-SY5Y) cell culture and differentiation in 3-D collagen hydrogels for cell-based biosensing. Biosens Bioelectron 21:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Dohm CP, Kermer P, Bahr M (2008) Aggregopathy in neurodegenerative diseases: mechanism and therapeutic implication. Neurodegener Dis 5:321–338

    Article  PubMed  CAS  Google Scholar 

  • Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB, Masliah E, Rohn TT (2007) Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 170(5):1725–1738

    Article  PubMed  CAS  Google Scholar 

  • Ertel SI, Ertel EA, Clozel JP (1997) T-type Ca2+ channels and pharmacological blockade: potential pathophysiological relevance. Cardiovasc Drugs Ther 11:723–739

    Article  PubMed  CAS  Google Scholar 

  • Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  PubMed  CAS  Google Scholar 

  • Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT (2007) The impact of the E46K mutant on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46:7107–7118

    Article  PubMed  CAS  Google Scholar 

  • Freedman SB et al (1984) Identification and characterization of voltage-sensitive calcium channels in neuronal clonal cell lines. J Neurosci 4(6):1453–1467

    PubMed  CAS  Google Scholar 

  • Garcia-mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254

    Article  PubMed  CAS  Google Scholar 

  • Goodwin J, Nath S, Engelborghs Y, Pountney DL (2012) Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int. http://dx.doi.org/10.1016/j.neuint.2012.11.004

  • Heady TN, Gomora JC, Macdonald TL, Perez-Reyes E (2001) Molecular pharmacology of t-type calcium (II) channels. Jpn J Pharmacol 85:339–350

    Article  PubMed  CAS  Google Scholar 

  • Hettiarachchi NT, Parker A, Dallas ML, Pennington K, Hung CC, Pearson HA, Boyle JP, Robinson P, Peers C (2009) alpha-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells. J Neurochem 111:1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Huguenard JR (1996) Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol 58:329–348

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2009) Formation and development of Lewy pathology: a critical update. J Neurol 256(Suppl 3):270–279

    Article  PubMed  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 14:1883–1898

    Article  Google Scholar 

  • Kragh CL, Lund LB, Febbraro F, Hansen HD, Gai WP, El-Agnaf O, Richter-Landsberg C, Jensen PH (2009) {alpha}-Synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J Biol Chem 284:10211–10222

    Article  PubMed  CAS  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  PubMed  CAS  Google Scholar 

  • Larsen KE et al (2006) α-Synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915–11922

    Article  PubMed  CAS  Google Scholar 

  • Liu XD, Ko S, Xu Y, Fattah EA, Xiang Q, Jagannath C, Ishii T, Komatsu M, Eissa NT (2012) Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress. J Biol Chem 287:19687–19698

    Article  PubMed  CAS  Google Scholar 

  • Lowe R, Pountney DL et al (2004) Calcium (II) selectively induces α-synuclein annular oligomers via interaction with C-terminal domain. Protein Sci 13(12):3245–3252

    Article  PubMed  CAS  Google Scholar 

  • Marques O, Outeiro TF (2012) Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 3:e350. doi: 10.1038/cddis.2012.94

  • Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    Article  PubMed  CAS  Google Scholar 

  • McLean PJ, Kawamata H, Hyman BT (2001) α-Synuclein enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in Primary neurons. Neuroscience 104:901–912

    Article  PubMed  CAS  Google Scholar 

  • Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229

    Article  PubMed  CAS  Google Scholar 

  • Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20:3214–3220

    PubMed  CAS  Google Scholar 

  • Nath S, Goodwin J, Engelborghs Y, Pountney DL (2011) Raised calcium promotes α-synuclein aggregate formation. Mol Cell Neurosci 46:516–526

    Article  PubMed  CAS  Google Scholar 

  • Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79

    Article  PubMed  CAS  Google Scholar 

  • Nielsen MS, Vorum H, Lindersson E, Jensen PH (2001) Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. J Biol Chem 276:22680–22684

    Article  PubMed  CAS  Google Scholar 

  • Nikoletopoulou V, Tavernarakis N (2012) Calcium homeostasis in aging neurons. Front Genet 3:200

    Article  PubMed  Google Scholar 

  • Park SM, Jung HY, Kim TD, Kim J (2002) Distinct roles of the N-terminal-binding domain and the C-terminal solubilising domain of alpha-synclein, a molecular chaperone. J Biol Chem 277:28512–28520

    Article  PubMed  CAS  Google Scholar 

  • Polymeropoulos M, Lavedan C, Leroy E, Ide E, Deheia A, Rutru A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos S, Chandrasekharappa S, Athanassiadou A, Papetropoulous T, Johnson G, Lazzarini M, Duoisin C, Di-Iorio G, Golbe I, Nussbaum R (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  • Pountney D, Voelcker N, Gai W (2005) Annular alpha synuclein oligomers are potentially toxic agents in alpha synucleinopathy. Hypothesis. Neurotox Res 7:59–67

    Article  PubMed  CAS  Google Scholar 

  • Rang HP (2001) Pharmacology, 4th edn. Churchill Livingstone, New York

    Google Scholar 

  • Reeve HL, Vaughan PF, Peers C (1994) Calcium channel currents in undifferentiated human neuroblastoma (SH-SY5Y) cells: actions and possible interactions of dihydropyridines and omega-conotoxin. Eur J Neurosci 6:943–952

    Article  PubMed  CAS  Google Scholar 

  • Riascos D et al (2011) Age-related loss of calcium buffering and selective neuronal vulnerability in Alzheimer’s disease. Acta Neuropathol 122:565–576

    Article  PubMed  CAS  Google Scholar 

  • Søgaard R, Ljungstrøm T, Pedersen KA, Olesen SP, Jensen BS (2001) KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. Am J Physiol Cell Physiol 280:C859–C866

    PubMed  Google Scholar 

  • Sonnier H, Kolomytkin OV, Marino AA (2000) Resting potential of excitable neuroblastoma cells in weak magnetic fields. Cell Mol Life Sci 57:514–520

    Article  PubMed  CAS  Google Scholar 

  • Talley E, Cribbs LL, Lee J-H, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (t-type) calcium channels. J Neurosci 19:1895–1911

    PubMed  CAS  Google Scholar 

  • Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 10:483–499

    Article  PubMed  CAS  Google Scholar 

  • Wen X et al (2011) T-type calcium channel expression in cultured human neuroblastoma cells. Neural Regen Res 6(31):2405–2409

    Google Scholar 

  • Wildburger NC, Lin-Ye A, Baird MA, Lei D, Bao J (2009) Neuroprotective effects of blockers for T-type calcium channels. Mol Neurodegener 4:1–8

    Article  Google Scholar 

  • Wojda U, Salinska E, Kuznicki J (2008) Calcium ions in neuronal degeneration. IUBMB Life 60(9):575–590

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    Article  PubMed  CAS  Google Scholar 

  • Yunker MA (2003) Modulation and pharmacology of low voltage-activated T-type calcium channels. J Bioenerg Biomembr 35:577–598

    Article  PubMed  CAS  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha synuclein causes Parkinson’s disease and Lewy Body Dementia. Ann Neurol 55:164–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the US Parkinson’s Disease Foundation, Gold Coast Parkinson’s Disease Society, Clem Jones Foundation and Griffith Health Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean L. Pountney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follett, J., Darlow, B., Wong, M.B. et al. Potassium Depolarization and Raised Calcium Induces α-Synuclein Aggregates. Neurotox Res 23, 378–392 (2013). https://doi.org/10.1007/s12640-012-9366-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9366-z

Keywords

Navigation