Skip to main content

Advertisement

Log in

The Inhibition of ERK Activation Mediates the Protection of Necrostatin-1 on Glutamate Toxicity in HT-22 Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Receptor-interacting protein 1 (RIP1), a molecular switch protein from apoptosis to necroptosis, is regarded to play an essential role in necroptotic cell death. Although the increased RIP1 activity induced by tumor necrosis factor α activates mitogen-activated protein kinases (MAPKs) including ERK and leads to apoptotic or necrotic cell death, it is unclear what is the role of ERK during the process of necroptosis. In this study, our data demonstrated that ERK inhibitors U0126 and PD98059 blocked glutamate-induced necroptosis in HT-22 cells, indicating the critical role of ERK activation in necroptosis. Further, we found glutamate treatment increased phosphorylated ERK1/2 level, but the specific necroptosis inhibitor Necrostatin-1 (Nec-1) significantly inhibited the phosphorylation of ERK1 (P44) at 5, 10, and 15 min after glutamate treatment; the phosphorylation of ERK2 (P42) level was also markedly reduced by Nec-1 at 10 min after glutamate treatment. The phosphorylation of JNK and P38, two other MAPK members, were slightly increased after glutamate treatment, but Nec-1 had no inhibitory effect on JNK and P38 activation. Our finding suggested that ERK activation may play an important role in necroptotic cell death and the inhibition of ERK activation mediated the protection of Nec-1 on glutamate-induced necroptosis. Since ERK is considered as a downstream of RIP1, the RIP1/ERK signal pathway may provide new therapeutic avenues for the treatment of ischemia–reperfusion damage and neurodegenerative diseases-containing necroptotic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BFA:

Bafilomycin A1

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun N-terminal kinase

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)2-H-tetrazolium, inner salt

MAPK:

Mitogen-activated protein kinase

RIP1:

Receptor-interacting protein 1

Nec-1:

Necrostatin-1

Nec-1i:

Inactive form of Nec-1

TNFα:

Tumor necrosis factor α

References

  • Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, Milstien S, Spiegel S (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  PubMed  CAS  Google Scholar 

  • Chen WW, Yu H, Fan HB, Zhang CC, Zhang M, Zhang C, Cheng Y, Kong J, Liu CF, Geng D, Xu X (2012) RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen–glucose deprivation combined with zVAD in primary cortical neurons. J Neurochem 120:70–77

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22:263–268

    Article  PubMed  CAS  Google Scholar 

  • Cory AH, Owen TC, Barltrop JA, Cory JG (1991) Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207–212

    PubMed  CAS  Google Scholar 

  • Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    Article  PubMed  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Cornelis S, Vandenabeele P (2007) RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 14:400–410

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    Article  PubMed  CAS  Google Scholar 

  • Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    Article  PubMed  CAS  Google Scholar 

  • Laird MD, Wakade C, Alleyne CH Jr, Dhandapani KM (2008) Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med 45:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Maher P, Schubert D (1997) A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, DeFranco DB (2006) Opposing roles for ERK1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK1/2 action at early versus late phases of oxidative stress. J Biol Chem 281:16436–16442

    Article  PubMed  CAS  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  PubMed  CAS  Google Scholar 

  • Qin AP, Liu CF, Qin YY, Hong LZ, Xu M, Yang L, Liu J, Qin ZH, Zhang HL (2010) Autophagy was activated in injured astrocytes and mildly decreased cell survival following glucose and oxygen deprivation and focal cerebral ischemia. Autophagy 6:738–753

    Article  PubMed  CAS  Google Scholar 

  • Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011:572634

    PubMed  Google Scholar 

  • Son JH, Shim JH, Kim KH, Ha JY, Han JY (2012) Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 44:89–98

    Article  PubMed  CAS  Google Scholar 

  • Suh HW, Kang S, Kwon KS (2007) Curcumin attenuates glutamate-induced HT22 cell death by suppressing MAP kinase signaling. Mol Cell Biochem 298:187–194

    Article  PubMed  CAS  Google Scholar 

  • Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  • Xilouri M, Stefanis L (2010) Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 9:701–719

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chua CC, Kong J, Kostrzewa RM, Kumaraguru U, Hamdy RC, Chua BH (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103:2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chua CC, Zhang M, Geng D, Liu CF, Hamdy RC, Chua BH (2010a) The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Res 1343:206–212

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BH (2010b) Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 1355:189–194

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhang H, Li J, Rosenberg S, Zhang EC, Zhou X, Qin F, Farabaugh M (2011) RIP1-mediated regulation of lymphocyte survival and death responses. Immunol Res 51:227–236

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant 30700245 from the National Natural Science Foundation of China and the SBK201221577 from Jiangsu province Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanbo Cheng or Deqin Geng.

Additional information

Min Zhang and Jizhen Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Li, J., Geng, R. et al. The Inhibition of ERK Activation Mediates the Protection of Necrostatin-1 on Glutamate Toxicity in HT-22 Cells. Neurotox Res 24, 64–70 (2013). https://doi.org/10.1007/s12640-012-9361-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9361-4

Keywords

Navigation