Skip to main content

Advertisement

Log in

Effect of l-Tyrosine In Vitro and In Vivo on Energy Metabolism Parameters in Brain and Liver of Young Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Tyrosinemia is a rare disease caused by a single mutation to the gene that code for the enzyme responsible for tyrosine catabolism. Because the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly understood, we evaluated the in vitro and in vivo effect of l-tyrosine on the activities of the enzymes citrate synthase, malate dehydrogenase, succinate dehydrogenase and complexes of the mitochondrial respiratory chain in the brains and livers of young rats. Thirty-day-old Wistar rats were killed by decapitation, and the brains and livers were harvested. l-Tyrosine (0.1, 1.0, 2.0 or 4.0 mM) was added to the reaction medium. For in vivo studies, Wistar rats were killed 1 h after a single intraperitoneal injection of either tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated. In this research, we demonstrated in vitro that l-tyrosine inhibited citrate synthase activity in the posterior cortex and that succinate dehydrogenase was increased in the posterior cortex, hippocampus, striatum and liver. The complex I activity was only inhibited in the hippocampus, whereas complex II activity was inhibited in the hippocampus, cortex and liver. Complex IV activity decreased in the posterior cortex. The acute administration of l-tyrosine inhibited enzyme malate dehydrogenase, citrate synthase and complexes II, II–III and IV in the posterior cortex and liver. The enzyme succinate dehydrogenase and complex I activity were inhibited in the posterior cortex and increased in the striatum. These results suggest impairment in energy metabolism that is likely mediated by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Chem Biol 28:1–4

    Google Scholar 

  • Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (2003) Pharmacokinetics of systemically administered tyrosine: a comparison of serum, brain tissue and in vivo microdialysate levels in the rat. J Neurochem 87:310–317

    Article  PubMed  CAS  Google Scholar 

  • Brennan WA, Bird ED, Aprille JR (1985) Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 44:1948–1950

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  PubMed  CAS  Google Scholar 

  • Carbonell T, Rama R (2007) Oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    Article  PubMed  CAS  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory Action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  PubMed  CAS  Google Scholar 

  • Corrêa C, Amboni G, Assis LC, Martins MR, Kapczinski F, Streck EL, Quevedo J (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891

    Article  PubMed  Google Scholar 

  • D’Eufemia P, Finocchiaro R, Celli M, Raccio I, Properzi E, Zicari A (2009) Increased nitric oxide release by neutrophils of a patient with tyrosinemia type III. Biomed Pharmacother 63:359–361

    Article  PubMed  Google Scholar 

  • Dawson TM, Gonzalez-Zulueta M, Kusel J, Dawson VL (1998) Nitric oxide: diverse actions in the central and peripheral nervous systems. Neuroscientist 4:96–112

    CAS  Google Scholar 

  • de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CM (2011) Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats. Metab Brain Dis 26:221–227

    Article  PubMed  CAS  Google Scholar 

  • de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CM (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364:253–261

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Hu H, Fang Y (2012) Multiple tyrosine metabolites are GPR35 agonists. Sci Rep 2:373

    Article  PubMed  Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  PubMed  CAS  Google Scholar 

  • García-Cazola A, Wolf IN, Serrano M, Moog U, Perez-Dueñas B, Póo P, Pineda M, Campistol J, Hoffmann GF (2009) Mental retardion and inborn errors of metabolism. J Inherit Metab Dis 32:599–608

    Google Scholar 

  • Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP (1973) Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr 83:798–805

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Heales SJ, Bolanõs JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    Article  PubMed  CAS  Google Scholar 

  • Held PK (2006) Disorders of tyrosine catabolism. Mol Genet Metab 88:103–106

    Article  PubMed  CAS  Google Scholar 

  • Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS, Chakrabarti S (2011) Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1812:663–673

    Article  PubMed  CAS  Google Scholar 

  • Kelly D, Gordon J, Alpers R, Strauss AW (1989) The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem 264:18921–18925

    PubMed  CAS  Google Scholar 

  • Kitto GB (1969) Intra- and extramitochondrial malate dehydrogenases from chicken and tuna heart. Methods Enzymol XIII:106–116

  • Lemonnier F, Charpentier C, Odievre M, Larregue M, Lemonnier A (1979) Tyrosine aminotransferase isoenzyme deficiency. J Pediatr 94:931–932

    Article  PubMed  CAS  Google Scholar 

  • Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4’-epiadriamycin in mice. Tumori 71:241–249

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Macsai MS, Schwartz TL, Hinkle D, Hummel MB, Mulhern MG, Rootman D (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GA, Grompe M, Lambert M, Tanguay RM (2001) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 1977–1982

    Google Scholar 

  • Monsalve M, Borniquel S, Valle I, Lamas S (2007) Mitochondrial dysfunction in human pathologies. Front Biosci 12:1131–1153

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Santos MS, Oliveira CR (2007) Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal 9:1621–1630

    Article  PubMed  CAS  Google Scholar 

  • Morelli A, Ravera S, Panfoli I (2011) Hypothesis of an energetic function for myelin. Cell Biochem Biophys 61:179–187

    Article  PubMed  CAS  Google Scholar 

  • Morre MC, Hefti F, Wurtman RJ (1980) Regional tyrosine levels in rat brain after tyrosine administration. J Neural Transm 49:45–50

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Tanaka Y, Mitsubuchi H, Endo F (2007) Aninal models of tyrosinemia. J Nutr 137:1557–1560

    Google Scholar 

  • Peng ZF, Chen MJ, Yap YW, Manikandan J, Melendez AJ, Choy MS, Moore PK, Cheung NS (2008) Proteasome inhibition: an early or late event in nitric oxide-induced neuronal death? Nitric Oxide 18:136–145

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz LG, Williams LR, Anderson CE, Mazur A, Kaplan P (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  • Schurr A (2002) Energy metabolism, stress hormones and neural recovery from cerebral ischemia/hypoxia. Neurochem Int 41:1–8

    Article  PubMed  CAS  Google Scholar 

  • Scott CR (2006) The genetic tyrosinemias. Am J Med Genet C Semin Med Genet 142:121–126

    Google Scholar 

  • Sener RN (2005) Brain magnetic resonance imaging in tyrosinemia. Acta Radiol 46:618–620

    Article  PubMed  CAS  Google Scholar 

  • Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenback FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral cortex of young rats. Int J Dev Neurosci 26:553–559

    Article  Google Scholar 

  • Sgaravatti AM, Magnusson AS, de Oliveira AS, Rosa AP, Mescka CP, Zanin FR, Pederzolli CD, Wyse AT, Wannmacher CM, Wajner M, Dutra-Filho CS (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425

    Article  PubMed  CAS  Google Scholar 

  • Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610

    PubMed  CAS  Google Scholar 

  • Shrimpton AE, Braddock BR, Thomson LL, Stein CK, Hoo JJ (2004) Molecular delineation of deletions on 2q37.3 in three cases with an Albright hereditary osteodystrophy-like phenotype. Clin Genet 66:537–544

    Article  PubMed  CAS  Google Scholar 

  • Stoerner JW, Butler IJ, Morriss FH Jr, Howell RR Jr, Seifert WE Jr, Caprioli RM, Adcock EW, Denson SE (1980) CSF neurotransmitter studies. An infant with ascorbic acid-responsive tyrosinemia. Am J Dis Child 134:492–494

    PubMed  CAS  Google Scholar 

  • Tyler D (1992) The mitochondrion in health and diseases. VCH, New York

    Google Scholar 

  • Valikhani M, Akhyani M, Jafari AK, Barzegari M, Toosi S (2005) Oculocutaneous tyrosinaemia or tyrosinaemia type 2: a case report. J Eur Acad Dermatol Venereol 20:591–594

    Article  Google Scholar 

  • Vincent VA, Tilders FJ, Van Dam AM (1998) Production, regulation and role of nitric oxide in glial cells. Mediators Inflamm 7:239–255

    Article  PubMed  CAS  Google Scholar 

  • Wajner M, Latini A, Wyse ATS, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metabolic Dis 27:427–448

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC) and Universidade do Extremo Sul Catarinense (UNESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, G.K., Scaini, G., Carvalho-Silva, M. et al. Effect of l-Tyrosine In Vitro and In Vivo on Energy Metabolism Parameters in Brain and Liver of Young Rats. Neurotox Res 23, 327–335 (2013). https://doi.org/10.1007/s12640-012-9345-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9345-4

Keywords

Navigation