Cholinergic Dysfunctions and Enhanced Oxidative Stress in the Neurobehavioral Toxicity of Lambda-Cyhalothrin in Developing Rats

Abstract

This study is focused on understanding the mechanism of neurobehavioral toxicity of lambda-cyhalothrin, a new generation type II synthetic pyrethroid in developing rats following their exposure from post-lactational day (PLD)22 to PLD49 and investigate whether neurobehavioral alterations are transient or persistent. Post-lactational exposure to lambda-cyhalothrin (1.0 or 3.0 mg/kg body weight, p.o.) affected grip strength and learning activity in rats on PLD50 and the persistent impairment of grip strength and learning was observed at 15 days after withdrawal of exposure on PLD65. A decrease in the binding of muscarinic–cholinergic receptors in frontocortical, hippocampal, and cerebellar membranes associated with decreased expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in hippocampus was observed following exposure to lambda-cyhalothrin on PLD50 and PLD65. Exposure to lambda-cyhalothrin was also found to increase the expression of growth-associated protein-43 in hippocampus of rats on PLD50 and PLD65 as compared to controls. A significant increase in lipid peroxidation and protein carbonyl levels and decreased levels of reduced glutathione and activity of superoxide dismutase, catalase, and glutathione peroxidase in brain regions of lambda-cyhalothrin exposed rats were distinctly observed indicating increased oxidative stress. Inhibition of ChAT and AChE activity may cause down-regulation of muscarinic–cholinergic receptors consequently impairing learning activity in developing rats exposed to lambda-cyhalothrin. The data further indicate that long-term exposure to lambda-cyhalothrin at low doses may be detrimental and changes in selected behavioral and neurochemical end points may persist if exposure to lambda-cyhalothrin continues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aebi H (1984) Catalase in vitro. In: Packer L (ed) Methods in enzymology, vol 105. Academic Press, New York, pp 121–126

    Google Scholar 

  2. Amoah P, Drechsel P, Abaidoo RC, Ntow WJ (2006) Pesticide and pathogen contamination of vegetables in Ghana’s urban markets. Arch Environ Contam Toxicol 50:1–6

    PubMed  Article  CAS  Google Scholar 

  3. Amweg EL, Weston DP, Ureda NM (2005) Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environ Toxicol Chem 24:966–972

    PubMed  Article  CAS  Google Scholar 

  4. Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706

    PubMed  Article  CAS  Google Scholar 

  5. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18–S25

    PubMed  Article  Google Scholar 

  6. Aziz MH, Agrawal AK, Adhami VM, Shukla Y, Seth PK (2001) Neurodevelopmental consequences of gestational exposure (GD14–GD20) to low dose deltamethrin in rats. Neurosci Lett 300:161–165

    PubMed  Article  CAS  Google Scholar 

  7. Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    PubMed  Article  CAS  Google Scholar 

  8. Bissacot DZ, Vassilieff I (1997) Pyrethroid residues in milk and blood of dairy cows following single topical applications. Vet Hum Toxicol 39:6–8

    PubMed  CAS  Google Scholar 

  9. Bradberry SM, Cage SA, Proudfoot AT, Vale JA (2005) Poisoning due to pyrethroids. Toxicol Rev 24:93–106

    PubMed  Article  CAS  Google Scholar 

  10. Breckenridge CB, Holden L, Sturgess N, Weiner M, Sheets L, Sargent D, Soderlund DM, Choi JS, Symington S, Clark JM, Burr S, Ray D (2009) Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. Neurotoxicology 30S:S17–S31

    Article  Google Scholar 

  11. Brown TP, Rumsby PC, Capelton AC, Rushton L, Levy LS (2006) Pesticides and Parkinson’s disease—is there a link? Environ Health Perspect 114:156–164

    PubMed  Article  Google Scholar 

  12. Celik A, Mazmanci B, Camlica Y, Askin A, Comelekoglu U (2003) Cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow. Mutat Res 539:91–97

    PubMed  Article  CAS  Google Scholar 

  13. Celik A, Mazmanci B, Camlica Y, Comelekoglu U, Askin A (2005) Evaluation of cytogenetic effects of lambda-cyhalothrin on Wistar rat bone marrow by gavage administration. Ecotoxicol Environ Saf 61:128–133

    PubMed  Article  CAS  Google Scholar 

  14. El-Demerdash FM (2007) Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicol In Vitro 21:392–397

    PubMed  Article  CAS  Google Scholar 

  15. Ellman GL, Courtney KD, Anders V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    PubMed  Article  CAS  Google Scholar 

  16. Farage-Elawar M (1989) Enzyme and behavioral changes in young chicks as a result of carbaryl treatment. J Toxicol Environ Health 26:119–131

    PubMed  Article  CAS  Google Scholar 

  17. Feo ML, Eljarrat E, Manaca MN, Dobaño C, Barcelo D, Sunyer J, Alonso PL, Menendez C, Grimalt JO (2012) Pyrethroid use-malaria control and individual applications by households for other pests and home garden use. Environ Int 38:67–72

    PubMed  Article  CAS  Google Scholar 

  18. Fetoui H, Garoui EM, Makni-ayadi F, Zeghal N (2008) Oxidative stress induced by lambda-cyhalothrin in rat erythrocytes and brain: attenuation by vitamin C. Environ Toxicol Pharmacol 26:225–231

    PubMed  Article  CAS  Google Scholar 

  19. Fetoui H, Garoui EM, Zegha IE (2009) Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Exp Toxicol Pathol 61:189–196

    PubMed  Article  CAS  Google Scholar 

  20. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Method Enzymol 105:114–121

    Article  CAS  Google Scholar 

  21. Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci 93:4765–4769

    PubMed  Article  CAS  Google Scholar 

  22. Fredriksson A, Archer T (1996) Alpha-phenyl-tert-butyl-nitrone (PBN) reverses age-related maze learning performance and motor activity deficits in C57 BL/6 mice. Behav Pharmacol 7:245–253

    PubMed  Article  CAS  Google Scholar 

  23. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. The disposition of 3H-norepinephrine, 3H-dopamine and 3H-dopa in various regions of the brain. J Neurochem 13:655–659

    PubMed  Article  CAS  Google Scholar 

  24. Goslin K, Schreyer DJ, Skene JHP, Banker G (1990) Changes in the distribution of GAP-43 during the development of neuronal polarity. J Neurosci 10:588–602

    PubMed  CAS  Google Scholar 

  25. Gu BG, Wang HM, Chen WL, Cai DJ, Shan ZJ (2007) Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China. Regul Toxicol Pharmacol 48:69–74

    PubMed  Article  CAS  Google Scholar 

  26. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    PubMed  Article  CAS  Google Scholar 

  27. Hasan M, Haider SS (1989) Acetyl homocysteine thiolactone protect against some neurotoxic effects of thallium. Neurotoxicology 10:257–262

    PubMed  CAS  Google Scholar 

  28. Holahan MR, Honegger KS, Tabatadze N, Routtenberg A (2007) GAP-43 gene expression regulates information storage. Learn Mem 14:407–415

    PubMed  Article  CAS  Google Scholar 

  29. Hoskins B, Ho IK (1992) Tolerance to organophosphorus cholinesterase inhibition. In: Chambers JE, Levi PE (eds) Organophosphates: chemistry, fate, and effects. Academic Press, San Diego, pp 285–297

    Google Scholar 

  30. Hossain MM, Richardson JR (2011) Mechanism of pyrethroid pesticide-induced apoptosis: role of calpain and the ER stress pathway. Toxicol Sci 122:512–525

    PubMed  Article  CAS  Google Scholar 

  31. Hossain MM, Suzuki T, Sato I, Takewaki T, Suzuki K, Kobayashi H (2004) The modulatory effect of pyrethroids on acetylcholine release in the hippocampus of freely moving rats. Neurotoxicology 25:825–833

    PubMed  Article  CAS  Google Scholar 

  32. Hossain MM, Suzuki T, Sato I, Takewaki T, Suzuki K, Kobayashi H (2005) Neuromechanical effects of pyrethroids, allethrin, cyhalothrin and deltamethrin on the cholinergic processes in rat brain. Life Sci 77:795–807

    PubMed  Article  CAS  Google Scholar 

  33. Hossain MM, Suzuki T, Sato N, Sato I, Takewaki T, Suzuki K, Tachikawa E, Kobayashi H (2006) Differential effects of pyrethroid insecticides on extracellular dopamine in the striatum of freely moving rats. Toxicol Appl Pharmacol 217:25–34

    Article  Google Scholar 

  34. Jamal M, Ameno K, Ameno S, Morishita J, Wang W, Kumihashi M, Ikuo U, Miki T, Ijiri I (2007) Changes in cholinergic function in the frontal cortex and hippocampus of rat exposed to ethanol and acetaldehyde. Neuroscience 144:232–238

    PubMed  Article  CAS  Google Scholar 

  35. Julvez J, Grandjean P (2009) Neurodevelopmental toxicity risks due to occupational exposure to industrial chemicals during pregnancy. Ind Health 47:459–468

    PubMed  Article  CAS  Google Scholar 

  36. Jurisic DA, Petrovic PA, Rajkovic VD, Nicin DS (2010) The application of lambda-cyhalothrin in tick controls. Exp Appl Acarol 52:101–109

    PubMed  Article  CAS  Google Scholar 

  37. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  38. Kale M, Rathore N, John S, Bhatnagar D (1999) Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 105:197–205

    PubMed  Article  CAS  Google Scholar 

  39. Khanna VK, Husain R, Seth PK (1994) Effect of protein malnutrition on the neurobehavioral toxicity of styrene in young rats. J Appl Toxicol 14:351–356

    PubMed  Article  CAS  Google Scholar 

  40. Kroeger A, Villegas E, Ordonez-Gonzalez J, Pavon E, Scorza JV (2003) Prevention of the transmission of chagas disease with pyrethroid-impregnated materials. Am J Trop Med Hyg 68:307–311

    PubMed  Google Scholar 

  41. Kumar A, Rai DK, Sharma B, Pandey RS (2009) Lambda-cyhalothrin and cypermethrin induced in vivo alterations in the activity of acetylcholinesterase in a freshwater fish, Channa punctatus (Bloch). Pesticide Biochem Physiol 93:96–99

    Article  CAS  Google Scholar 

  42. Landrigan PJ, Miodovnik A (2011) Children’s health and the environment: an overview. Mt Sinai J Med 78:1–10

    PubMed  Article  Google Scholar 

  43. Lawler SP, Dritz DA, Christiansen JA, Cornel AJ (2007) Effects of lambda-cyhalothrin on mosquito larvae and predatory aquatic insects. Pest Manag Sci 63:234–240

    PubMed  Article  CAS  Google Scholar 

  44. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn B, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    PubMed  Article  CAS  Google Scholar 

  45. Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci 100:8526–8531

    PubMed  Article  CAS  Google Scholar 

  46. Liu HX, Zhang JJ, Zheng P, Zhang Y (2005) Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 139:169–177

    PubMed  Article  CAS  Google Scholar 

  47. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 192:265–275

    Google Scholar 

  48. Martinez-Larrañaga MR, Anadón A, Martínez MA, Martínez M, Castellano VJ, Díaz MJ (2003) 5-HT loss in rat brain by type II pyrethroid insecticides. Toxicol Ind Health 19:147–155

    PubMed  Article  Google Scholar 

  49. Mate MS, Ghosh RC, Mondal S, Karmakar DB (2010) Effect of lambda cyhalothrin on rats: an acute toxicity study. J Indian Soc Toxicol 6:25–28

    Google Scholar 

  50. Mathirajan VG, Natarajan K, Kuttalam S, Chandrasekaran S, Regupathy A (2000) Efficacy of lambda cyhalothrin (Karate 5 EC) against brinjal shoot and fruit borer (Leucinodes orbonalis Guen.). J Pestic Res 12:117–119

    Google Scholar 

  51. Michelangeli F, Robson MJ, East JM, Lee AG (1990) The conformation of pyrethroids bound to lipid bilayers. Biochem Biophys Acta 1028:49–57

    PubMed  Article  CAS  Google Scholar 

  52. Miodovnik A (2011) Environmental neurotoxicants and developing brain. Mt Sinai J Med 78:58–77

    PubMed  Article  Google Scholar 

  53. Miranda K, Cunha ML, Dores EF, Calheiros DF (2008) Pesticide residues in river sediments from the Pantanal Wetland, Brazil. J Environ Sci Health B 43:717–722

    PubMed  Article  CAS  Google Scholar 

  54. Mohapatra S, Ahuja AK (2010) Persistence and dissipation of lambda-cyhalothrin in/on mango (Mangifera indica). Indian J Agric Sci 80:306–308

    Google Scholar 

  55. Moreira EG, Vassilieff I, Vassilieff VS (2001) Developmental lead exposure: behavioural, alterations in the short and long-term. Neurotoxicol Teratol 23:489–495

    PubMed  Article  CAS  Google Scholar 

  56. Muhammad F, Akhtar M, Rahman ZU, Farooq HU, Khaliq T, Anwar MI (2010) Multi-residue determination of pesticides in the meat of cattle in Faisalabad-Pakistan. Egypt Acad J Biol Sci 2:19–28

    Google Scholar 

  57. Mulambalah CS, Siamba DN, Ngeiywa MM, Vulule JM (2010) Evaluation of lambda-cyhalothrin persistence on different indoor surfaces in a malaria epidemic-prone area in Kenya. J Biol Sci 5:258–263

    Google Scholar 

  58. Narahashi T (1996) Neuronal ion channels as the target sites of insecticides. Pharmacol Toxicol 78:1–14

    Article  Google Scholar 

  59. Nasuti C, Gabbianelli R, Falcioni M, Stefano A, Sozio P, Cantalamessa F (2007) Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229:194–205

    PubMed  Article  CAS  Google Scholar 

  60. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    PubMed  Article  CAS  Google Scholar 

  61. Oliveira C, Vassilieff VS, Vassilieff I (2000) Residues and placental transfer of lambda-cyhalothrin in goats. J Vet Res I 4:146–152

    Google Scholar 

  62. Pesticide Tolerances (1998) Lambda-cyhalothrin. Fed Regist 63:7291–7299

    Google Scholar 

  63. Ratnasooriya WD, Ratnayake SSK, Jayatunga YNA (2003) Effects of IconR, a pyrethroid insecticide on early pregnancy of rats. Hum Exp Toxicol 22:523–533

    PubMed  Article  CAS  Google Scholar 

  64. Ray DE, Fry JR (2006) Reassessment of the neurotoxicity of pyrethroid insecticides. Pharmacol Ther 111:174–193

    PubMed  Article  CAS  Google Scholar 

  65. Rekart JL, Quinn B, Mesulam MM, Routtenberg A (2004) Subfield-specific increase in brain growth protein in post-mortem hippocampus of Alzheimer’s patients. Neuroscience 126:579–584

    PubMed  Article  CAS  Google Scholar 

  66. Routtenberg A, Cantallops I, Zaffuto S, Serrano P, Namgung U (2000) Enhanced learning after genetic overexpression of a brain growth protein. Proc Natl Acad Sci USA 97:7657–7662

    PubMed  Article  CAS  Google Scholar 

  67. Sarin S, Gill KD (1998) Biochemical and behavioral deficits in adult rat following chronic dichlorvos exposure. Pharmacol Biochem Behav 59:1081–1086

    PubMed  Article  CAS  Google Scholar 

  68. Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    PubMed  CAS  Google Scholar 

  69. Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    PubMed  Article  Google Scholar 

  70. Schroeder SR (2000) Mental retardation and developmental disabilities influenced by environmental neurotoxic insults. Environ Health Perspect 3:395–399

    Google Scholar 

  71. Seenivasan S, Muraleedharan NN (2009) Residues of lambda-cyhalothrin in tea. Food Chem Toxicol 47:502–505

    PubMed  Article  CAS  Google Scholar 

  72. Shafer TJ, Meyer DA, Crofton KM (2005) Developmental neurotoxicity of pyrethroid insecticides: Critical review and future research needs. Environ Health Perspect 113:123–136

    PubMed  Article  CAS  Google Scholar 

  73. Shingo T, Date I, Yoshida H, Ohmoto T (2002) Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson’s disease. J Neurosci Res 69:946–954

    PubMed  Article  CAS  Google Scholar 

  74. Soderlund DM, Clark JM, Sheets LP, Mullin LS, Piccirillo VJ, Sargent D, Stevens JT, Weiner ML (2002) Mechanism of pyrethroid neurotoxicity: implication for cumulative risk assessment. Toxicology 171:3–59

    PubMed  Article  CAS  Google Scholar 

  75. Spurlock F, Lee M (2008) Synthetic pyrethroid use patterns, properties and environmental effects. American Chemical Society, Washington, DC

    Google Scholar 

  76. Stahl Wl, Smith JC, Napolitano LM, Basford RE (1963) Brain mitochondria. I. Isolation of bovine brain mitochondria. J Cell Biol 19:293–307

    PubMed  Article  CAS  Google Scholar 

  77. Tariq MI, Afzal S, Hussain I (2004) Pesticides in shallow groundwater of Bahawalnagar, Muzafargarh, D.G. Khan and Rajan Pur districts of Punjab, Pakistan. Environ Int 30:71–79

    Article  Google Scholar 

  78. Tariq MI, Afzal S, Hussain I (2006) Degradation and persistence of cotton pesticides in sandy loam soils from Punjab, Pakistan. Environ Res 100:184–196

    PubMed  Article  CAS  Google Scholar 

  79. Terry AV, Stone JD, Buccafusco JJ, Sickles DW, Sood A, Prendergast MA (2003) Repeated exposure to subthreshhold doses of chlorpyrifos in rats: hippocampal damage, impaired axonal transport and deficits in spatial learning. J Pharmacol Exp Ther 305:375–384

    PubMed  Article  CAS  Google Scholar 

  80. Turgut C, Ornek H, Cutright TJ (2011) Determination of pesticide residues in Turkey’s table grapes: the effect of integrated pest management, organic farming, and conventional farming. Environ Monit Assess 173:315–323

    PubMed  Article  CAS  Google Scholar 

  81. Wang W, Cai DJ, Shan ZJ, Chen WL, Poletika N, Gao XW (2007) Comparison of the acute toxicity for gamma-cyhalothrin and lambda-cyhalothrin to zebra fish and shrimp. Regul Toxicol Pharmacol 47:184–188

    PubMed  Article  CAS  Google Scholar 

  82. Wehner JM, Upchurch M (1989) The effects of chronic oxotremorine treatment on spatial learning and tolerance development in mice. Pharmacol Biochem Behav 32:543–551

    PubMed  Article  CAS  Google Scholar 

  83. Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78

    PubMed  Article  CAS  Google Scholar 

  84. Wolansky M, Gennings C, Crofton K (2006) Relative potencies for acute effects of pyrethroids on motor function in rats. Toxicol Sci 89:271–277

    PubMed  Article  CAS  Google Scholar 

  85. World Health Organisation (1990) Cyhalothrin, Environmental Health Criteria, 99; Geneva, Switzerland

Download references

Acknowledgments

The authors thank the Director, CSIR-Indian Institute of Toxicology Research, Lucknow for his keen interest in the present study. The authors appreciate Dr. Pramod Kumar for extending unconditional technical assistance. The authors also thank Professor (Ms). Madhu Mehrotra, Head, Department of English and Modern European Languages, University of Lucknow, Lucknow and Mr. B. D. Bhattacharji, Senior Principal Scientist, CSIR-IITR, Lucknow for painstakingly going through the manuscript and making the necessary changes in the language. The financial support by Indian Council of Medical Research, New Delhi for carrying out the study is acknowledged. The CSIR-IITR Communication No. is 2960.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vinay K. Khanna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ansari, R.W., Shukla, R.K., Yadav, R.S. et al. Cholinergic Dysfunctions and Enhanced Oxidative Stress in the Neurobehavioral Toxicity of Lambda-Cyhalothrin in Developing Rats. Neurotox Res 22, 292–309 (2012). https://doi.org/10.1007/s12640-012-9313-z

Download citation

Keywords

  • Lambda-cyhalothrin
  • Rat brain
  • Muscarinic–cholinergic receptors
  • Oxidative stress
  • ChAT immunoreactivity