Gestational Restraint Stress and the Developing Dopaminergic System: An Overview

Abstract

Prenatal stress exerts a strong impact on fetal brain development in rats impairing adaptation to stressful conditions, subsequent vulnerability to anxiety, altered sexual function, and enhanced propensity to self-administer drugs. Most of these alterations have been attributed to changes in the neurotransmitter dopamine (DA). In humans; dysfunction of dopaminergic system is associated with development of several neurological disorders, such as Parkinson disease, schizophrenia, attention-deficit hyperactivity disorder, and depression. Evidences provided by animal research, as well as retrospective studies in humans, pointed out that exposure to adverse events in early life can alter adult behaviors and neurochemical indicators of midbrain DA activity, suggesting that the development of the DA system is sensitive to disruption by exposure to early stressors. The purpose of this article is to provide a general overview of published studies and our own study related to the effect of prenatal insults on the development of DA metabolism and biology, focusing mainly in articles involving prenatal-restraint stress protocols in rats. We will also attempt to make a correlation between theses alterations and DA-related pathological processes in humans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

6-OHDA:

6-Hydroxydopamine

AADC:

l-Amino acid decarboxylase

AAS:

Androgenic-anabolic esteroids

ACTH:

Adrenocorticotropic hormone

ADHD:

Attention-deficit hyperactivity disorder

AMG:

Amygdala

COMT:

Catechol-O-methyltransferase

CPu:

Caudate putamen

CPu-L:

Caudate putamen lateral

CPu-M:

Caudate putamen medial

CRH:

Corticotropin-releasing hormone

DA:

Dopamine

DAT:

DA transporter

DFC:

Dorsal frontal cortex

DOPAC:

3,4-Dihydroxyphenylacetic acid

E:

Embryonic day

EAAT:

Excitatory amino acid transporter

GLT:

Glutamate transporter

HPA:

Hypothalamic–pituitary–adrenal

HPG:

Hypothalamic–pituitary–gonadal

HVA:

Homovanillic acid

l-DOPA:

l-3,4-Dihydroxyphenylalanine

MAOB:

Monoamine oxidase B

mdDA:

Mesodiencephalic dopaminergic

mGluR:

Metabotropic glutamate receptor

MPC:

Medial prefrontal cortex

NAc:

Nucleus accumbens

NAc-C:

Nucleus accumbens core

NAc-S:

Nucleus accumbens shell

NMDA:

N-methyl-d-aspartic acid

PD:

Parkinson’s disease

PFC:

Prefrontal cortex

PND:

Postnatal days

POA:

Preoptic area

PS:

Prenatal stress

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

TF:

Transcription factors

VGluT2:

Vesicular transporter of glutamate

VMAT2:

Vesicular monoamine transporter 2

VTA:

Ventral tegmental area

References

  1. Adler V, Yin Z, Tew KD, Ronai Z (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18(45):6104–6111. doi:10.1038/sj.onc.1203128

    PubMed  CAS  Article  Google Scholar 

  2. Adrover E, Berger MA, Perez AA, Tarazi FI, Antonelli MC (2007) Effects of prenatal stress on dopamine D2 receptor asymmetry in rat brain. Synapse 61(6):459–462

    PubMed  CAS  Article  Google Scholar 

  3. Alonso R, Lopez-Coviella I (1998) Gonadal steroids and neuronal function. Neurochem Res 23(5):675–688

    PubMed  CAS  Article  Google Scholar 

  4. Alonso SJ, Arevalo R, Afonso D, Rodriguez M (1991) Effects of maternal stress during pregnancy on forced swimming test behavior of the offspring. Physiol Behav 50:511–517

    PubMed  CAS  Article  Google Scholar 

  5. Alonso SJ, Navarro E, Santana C, Rodriguez M (1997) Motor lateralization, behavioral despair and dopaminergic brain asymmetry after prenatal stress. Pharmacol Biochem Behav 58(2):443–448

    PubMed  CAS  Article  Google Scholar 

  6. Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27(1–2):3–18

    PubMed  Article  Google Scholar 

  7. Andersson E, Tryggvason U, Deng Q, Friling S, Alekseenko Z, Robert B, Perlmann T, Ericson J (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124(2):393–405. doi:10.1016/j.cell.2005.10.037

    PubMed  CAS  Article  Google Scholar 

  8. Archer JE, Blackman DE (1971) Prenatal psychological stress and offspring behavior in rats and mice. Dev Psychobiol 4(3):193–248. doi:10.1002/dev.420040302

    PubMed  CAS  Article  Google Scholar 

  9. Baffi JS, Palkovits M, Castillo SO, Mezey E, Nikodem VM (1999) Differential expression of tyrosine hydroxylase in catecholaminergic neurons of neonatal wild-type and Nurr1-deficient mice. Neuroscience 93(2):631–642

    PubMed  CAS  Article  Google Scholar 

  10. Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301(6761):1111

    PubMed  CAS  Article  Google Scholar 

  11. Barlow BK, Cory-Slechta DA, Richfield EK, Thiruchelvam M (2007) The gestational environment and Parkinson’s disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reprod Toxicol 23(3):457–470. doi:10.1016/j.reprotox.2007.01.007

    PubMed  CAS  Article  Google Scholar 

  12. Barros VG, Berger MA, Martijena ID, Sarchi MI, Perez AA, Molina VA, Tarazi FI, Antonelli MC (2004) Early adoption modifies the effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. J Neurosci Res 76(4):488–496

    PubMed  CAS  Article  Google Scholar 

  13. Barros VG, Duhalde-Vega M, Caltana L, Brusco A, Antonelli MC (2006a) Astrocyte-neuron vulnerability to prenatal stress in the adult rat brain. J Neurosci Res 83(5):787–800. doi:10.1002/jnr.20758

    PubMed  CAS  Article  Google Scholar 

  14. Barros VG, Rodriguez P, Martijena ID, Perez A, Molina VA, Antonelli MC (2006b) Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 60(8):609–618. doi:10.1002/syn.20336

    PubMed  CAS  Article  Google Scholar 

  15. Berger MA, Barros VG, Sarchi MI, Tarazi FI, Antonelli MC (2002) Long-term effects of prenatal stress on dopamine and glutamate receptors in adult rat brain. Neurochem Res 27(11):1525–1533

    PubMed  CAS  Article  Google Scholar 

  16. Berry MD, Juorio AV, Paterson IA (1994) The functional role of monoamine oxidases A and B in the mammalian central nervous system. Prog Neurobiol 42(3):375–391

    PubMed  CAS  Article  Google Scholar 

  17. Beyer C, Pilgrim C, Reisert I (1991) Dopamine content and metabolism in mesencephalic and diencephalic cell cultures: sex differences and effects of sex steroids. J Neurosci 11(5):1325–1333

    PubMed  CAS  Google Scholar 

  18. Bibb JA (2005) Decoding dopamine signaling. Cell 122(2):153–155. doi:10.1016/j.cell.2005.07.011

    PubMed  CAS  Article  Google Scholar 

  19. Biederman J (2005) Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry 57(11):1215–1220. doi:10.1016/j.biopsych.2004.10.020

    PubMed  Article  Google Scholar 

  20. Brake WG, Sullivan RM, Gratton A (2000) Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci 20(14):5538–5543

    PubMed  CAS  Google Scholar 

  21. Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev 33(7):1089–1098. doi:10.1016/j.neubiorev.2009.05.004

    PubMed  Article  Google Scholar 

  22. Carboni E, Barros VG, Ibba M, Silvagni A, Mura C, Antonelli MC (2010) Prenatal restraint stress: an in vivo microdialysis study on catecholamine release in the rat prefrontal cortex. Neuroscience 168(1):156–166. doi:10.1016/j.neuroscience.2010.03.046

    PubMed  CAS  Article  Google Scholar 

  23. Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ (2004) Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci 1021:33–50

    PubMed  Article  Google Scholar 

  24. Carlson JN, Fitzgerald LW, Keller RW Jr, Glick SD (1993) Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. Brain Res 630(1–2):178–187

    PubMed  CAS  Article  Google Scholar 

  25. Castro DS, Hermanson E, Joseph B, Wallen A, Aarnisalo P, Heller A, Perlmann T (2001) Induction of cell cycle arrest and morphological differentiation by Nurr1 and retinoids in dopamine MN9D cells. J Biol Chem 276(46):43277–43284. doi:10.1074/jbc.M107013200

    PubMed  CAS  Article  Google Scholar 

  26. Charil A, Laplante DP, Vaillancourt C, King S (2010) Prenatal stress and brain development. Brain Res Rev 65(1):56–79. doi:10.1016/j.brainresrev.2010.06.002

    PubMed  Article  Google Scholar 

  27. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37(5):942–946. doi:10.1016/j.biocel.2004.09.009

    PubMed  CAS  Article  Google Scholar 

  28. Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780(11):1362–1367. doi:10.1016/j.bbagen.2008.02.005

    PubMed  CAS  Article  Google Scholar 

  29. Chung S, Hedlund E, Hwang M, Kim DW, Shin BS, Hwang DY, Jung Kang U, Isacson O, Kim KS (2005) The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci 28(2):241–252. doi:10.1016/j.mcn.2004.09.008

    PubMed  CAS  Article  Google Scholar 

  30. Coe CL, Kramer M, Czeh B, Gould E, Reeves AJ, Kirschbaum C, Fuchs E (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54(10):1025–1034

    PubMed  CAS  Article  Google Scholar 

  31. Coleman-Mesches K, McGaugh JL (1995) Differential effects of pretraining inactivation of the right or left amygdala on retention of inhibitory avoidance training. Behav Neurosci 109(4):642–647

    PubMed  CAS  Article  Google Scholar 

  32. Creutz LM, Kritzer MF (2004) Mesostriatal and mesolimbic projections of midbrain neurons immunoreactive for estrogen receptor beta or androgen receptors in rats. J Comp Neurol 476(4):348–362. doi:10.1002/cne.20229

    PubMed  CAS  Article  Google Scholar 

  33. Dackis CA, O’Brien CP (2001) Cocaine dependence: a disease of the brain’s reward centers. J Subst Abuse Treat 21(3):111–117

    PubMed  CAS  Article  Google Scholar 

  34. Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE (2004) Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88(6):1398–1405

    PubMed  CAS  Article  Google Scholar 

  35. Dal Bo G, Berube-Carriere N, Mendez JA, Leo D, Riad M, Descarries L, Levesque D, Trudeau LE (2008) Enhanced glutamatergic phenotype of mesencephalic dopamine neurons after neonatal 6-hydroxydopamine lesion. Neuroscience 156(1):59–70. doi:10.1016/j.neuroscience.2008.07.032

    PubMed  CAS  Article  Google Scholar 

  36. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65(1):1–105

    PubMed  CAS  Article  Google Scholar 

  37. Darnaudery M, Maccari S (2008) Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 57(2):571–585. doi:10.1016/j.brainresrev.2007.11.004

    PubMed  CAS  Article  Google Scholar 

  38. Davis EP, Waffarn F, Sandman CA (2011) Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants. Dev Psychobiol 53(2):175–183. doi:10.1002/dev.20510

    PubMed  CAS  Article  Google Scholar 

  39. Defagot MC, Villar MJ, Antonelli MC (2002) Differential localization of metabotropic glutamate receptors during postnatal development. Dev Neurosci 24(4):272–282

    PubMed  CAS  Article  Google Scholar 

  40. Del Arco A, Mora F (2008) Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 90(2):226–235. doi:10.1016/j.pbb.2008.04.011

    PubMed  CAS  Article  Google Scholar 

  41. Denenberg VH (1981) Hemispheric laterality in animals and the effects of early experience. Behav Brain Sci 4:1–49

    Article  Google Scholar 

  42. Diaz R, Fuxe K, Ogren SO (1997) Prenatal corticosterone treatment induces long-term changes in spontaneous and apomorphine-mediated motor activity in male and female rats. Neuroscience 81(1):129–140

    PubMed  CAS  Article  Google Scholar 

  43. Entringer S, Kumsta R, Hellhammer DH, Wadhwa PD, Wust S (2009) Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Horm Behav 55(2):292–298. doi:10.1016/j.yhbeh.2008.11.006

    PubMed  CAS  Article  Google Scholar 

  44. Feuerstein TJ (2008) Presynaptic receptors for dopamine, histamine, and serotonin. Handb Exp Pharmacol 184:289–338. doi:10.1007/978-3-540-74805-2_10

    PubMed  CAS  Article  Google Scholar 

  45. Fride E, Weinstock M (1988) Prenatal stress increases anxiety related behavior and alters cerebral lateralization of dopamine activity. Life Sci 42(10):1059–1065

    PubMed  CAS  Article  Google Scholar 

  46. Fride E, Weinstock M (1989) Alterations in behavioral and striatal dopamine asymmetries induced by prenatal stress. Pharmacol Biochem Behav 32(2):425–430

    PubMed  CAS  Article  Google Scholar 

  47. Fujioka A, Fujioka T, Ishida Y, Maekawa T, Nakamura S (2006) Differential effects of prenatal stress on the morphological maturation of hippocampal neurons. Neuroscience 141(2):907–915. doi:10.1016/j.neuroscience.2006.04.046

    PubMed  CAS  Article  Google Scholar 

  48. Fukumoto K, Morita T, Mayanagi T, Tanokashira D, Yoshida T, Sakai A, Sobue K (2009) Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 14(12):1119–1131. doi:10.1038/mp.2009.60

    PubMed  CAS  Article  Google Scholar 

  49. Fumagalli F, Pasini M, Frasca A, Drago F, Racagni G, Riva MA (2009) Prenatal stress alters glutamatergic system responsiveness in adult rat prefrontal cortex. J Neurochem 109(6):1733–1744. doi:10.1111/j.1471-4159.2009.06088.x

    PubMed  CAS  Article  Google Scholar 

  50. Gerardin DC, Pereira OC, Kempinas WG, Florio JC, Moreira EG, Bernardi MM (2005) Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol Behav 84(1):97–104. doi:10.1016/j.physbeh.2004.10.014

    PubMed  CAS  Article  Google Scholar 

  51. Glover V (2011) Annual research review: prenatal stress and the origins of psychopathology: an evolutionary perspective. J Child Psychol Psychiatry 52(4):356–367. doi:10.1111/j.1469-7610.2011.02371.x

    PubMed  Article  Google Scholar 

  52. Glover V, O’Connor TG, O’Donnell K (2010) Prenatal stress and the programming of the HPA axis. Neurosci Biobehav Rev 35(1):17–22. doi:10.1016/j.neubiorev.2009.11.008

    PubMed  CAS  Article  Google Scholar 

  53. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26(35):9047–9056. doi:10.1523/JNEUROSCI.2797-06.2006

    PubMed  CAS  Article  Google Scholar 

  54. Guerrini I, Thomson AD, Gurling HD (2007) The importance of alcohol misuse, malnutrition and genetic susceptibility on brain growth and plasticity. Neurosci Biobehav Rev 31(2):212–220. doi:10.1016/j.neubiorev.2006.06.022

    PubMed  CAS  Article  Google Scholar 

  55. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4(11):600–609. doi:10.1038/ncpneuro0924

    PubMed  CAS  Article  Google Scholar 

  56. Henry C, Kabbaj M, Simon H, Le Moal M, Maccari S (1994) Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol 6(3):341–345

    PubMed  CAS  Article  Google Scholar 

  57. Henry C, Guegant G, Cador M, Arnauld E, Arsaut J, Le Moal M, Demotes-Mainard J (1995) Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens. Brain Res 685(1–2):179–186

    PubMed  CAS  Article  Google Scholar 

  58. Huizink AC, Mulder EJ, Buitelaar JK (2004) Prenatal stress and risk for psychopathology: specific effects or induction of general susceptibility? Psychol Bull 130(1):115–142. doi:10.1037/0033-2909.130.1.115

    PubMed  Article  Google Scholar 

  59. Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 114(2):123–131

    PubMed  CAS  Article  Google Scholar 

  60. Jacobs FM, van Erp S, van der Linden AJ, von Oerthel L, Burbach JP, Smidt MP (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136(4):531–540. doi:10.1242/dev.029769

    PubMed  CAS  Article  Google Scholar 

  61. Jeong H, Kim MS, Kwon J, Kim KS, Seol W (2006) Regulation of the transcriptional activity of the tyrosine hydroxylase gene by androgen receptor. Neurosci Lett 396(1):57–61. doi:10.1016/j.neulet.2005.11.011

    PubMed  CAS  Article  Google Scholar 

  62. Katunar M, Saez T, Brusco A, Antonelli M (2009) Inmunocytochemical expression of dopamine-related transcription factors Pitx3 and Nurr1 in prenatally stressed adult rats. J Neurosci Res 87:1014–1022

    PubMed  CAS  Article  Google Scholar 

  63. Katunar M, Saez T, Brusco A, Antonelli M (2010) Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotoxic Res 18(1):69–81

    Article  Google Scholar 

  64. Kawashima S, Takagi K (1994) Role of sex steroids on the survival, neuritic outgrowth of neurons, and dopamine neurons in cultured preoptic area and hypothalamus. Horm Behav 28(4):305–312. doi:10.1006/hbeh.1994.1026

    PubMed  CAS  Article  Google Scholar 

  65. Kibel A, Drenjancevic-Peric I (2008) Impact of glucocorticoids and chronic stress on progression of Parkinson’s disease. Med Hypotheses 71(6):952–956. doi:10.1016/j.mehy.2008.06.036

    PubMed  CAS  Article  Google Scholar 

  66. Kippin TE, Szumlinski KK, Kapasova Z, Rezner B, See RE (2008) Prenatal stress enhances responsiveness to cocaine. Neuropsychopharmacology 33(4):769–782

    PubMed  CAS  Article  Google Scholar 

  67. Koenig JI, Kirkpatrick B, Lee P (2002) Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 27(2):309–318. doi:10.1016/S0893-133X(01)00396-7

    PubMed  CAS  Article  Google Scholar 

  68. Kofman O (2002) The role of prenatal stress in the etiology of developmental behavioural disorders. Neurosci Biobehav Rev 26(4):457–470

    PubMed  CAS  Article  Google Scholar 

  69. Kreek MJ, LaForge KS, Butelman E (2002) Pharmacotherapy of addictions. Nat Rev Drug Discov 1(9):710–726. doi:10.1038/nrd897nrd897

    PubMed  CAS  Article  Google Scholar 

  70. Kuhar MJ, Couceyro PR, Lambert PD (1999) Catecholamines. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular, and medical aspects. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  71. Le W, Conneely OM, Zou L, He Y, Saucedo-Cardenas O, Jankovic J, Mosier DR, Appel SH (1999) Selective agenesis of mesencephalic dopaminergic neurons in Nurr1-deficient mice. Exp Neurol 159(2):451–458. doi:10.1006/exnr.1999.7191

    PubMed  CAS  Article  Google Scholar 

  72. Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97(20):11032–11037

    PubMed  CAS  Article  Google Scholar 

  73. LeMay M (1999) Functional and anatomical asymmetries of the human brain. Eur J Neurol 6(1):79–85

    PubMed  CAS  Article  Google Scholar 

  74. Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432. doi:10.1146/annurev.neuro.25.112701.142754

    PubMed  CAS  Article  Google Scholar 

  75. Liu Y, Peter D, Roghani A, Schuldiner S, Prive GG, Eisenberg D, Brecha N, Edwards RH (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell 70(4):539–551. doi:10.1016/0092-8674(92)90425-C

    PubMed  CAS  Article  Google Scholar 

  76. Mabandla MV, Kellaway LA, Daniels WM, Russell VA (2009) Effect of exercise on dopamine neuron survival in prenatally stressed rats. Metab Brain Dis 24(4):525–539. doi:10.1007/s11011-009-9161-6

    PubMed  CAS  Article  Google Scholar 

  77. Maharjan S, Serova L, Sabban EL (2005) Transcriptional regulation of tyrosine hydroxylase by estrogen: opposite effects with estrogen receptors alpha and beta and interactions with cyclic AMP. J Neurochem 93(6):1502–1514. doi:10.1111/j.1471-4159.2005.03142.x

    PubMed  CAS  Article  Google Scholar 

  78. Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev Biol 282(2):467–479. doi:10.1016/j.ydbio.2005.03.028

    PubMed  CAS  Article  Google Scholar 

  79. McArthur S, McHale E, Dalley JW, Buckingham JC, Gillies GE (2005) Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. J Neuroendocrinol 17(8):475–482. doi:10.1111/j.1365-2826.2005.01331.x

    PubMed  CAS  Article  Google Scholar 

  80. McArthur S, McHale E, Gillies GE (2007) The size and distribution of midbrain dopaminergic populations are permanently altered by perinatal glucocorticoid exposure in a sex- region- and time-specific manner. Neuropsychopharmacology 32(7):1462–1476. doi:10.1038/sj.npp.1301277

    PubMed  CAS  Article  Google Scholar 

  81. McKenna MC, Gruetter R, Sonnewald U, Waagepetersen HS, Schousboe A (2006) Energy metabolism of the brain. In: Siegel GJ (ed) Basic neurochemistry: molecular, cellular and medical aspects, 7th edn. Elsevier Inc, Burlington, MA, pp 531–557

  82. Meltzer HY (1980) Relevance of dopamine autoreceptors for psychiatry: preclinical and clinical studies. Schizophr Bull 6(3):456–475

    PubMed  CAS  Google Scholar 

  83. Metz GA (2007) Stress as a modulator of motor system function and pathology. Rev Neurosci 18(3–4):209–222

    PubMed  Google Scholar 

  84. Miller DB, O’Callaghan JP (2008) Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases? Metabolism 57(Suppl 2):S44–S49. doi:10.1016/j.metabol.2008.07.011

    PubMed  CAS  Article  Google Scholar 

  85. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78(1):189–225

    PubMed  CAS  Google Scholar 

  86. Nielsen DM, Crosley KJ, Keller RW Jr, Glick SD, Carlson JN (1999) Ethanol induced differences in medial prefrontal cortex dopamine asymmetry and in nucleus accumbens dopamine metabolism in left- and right-turning rats. Brain Res 823(1–2):207–212

    PubMed  CAS  Article  Google Scholar 

  87. Nikodejevic B, Senoh S, Daly JW, Creveling CR (1970) Catechol-O-methyltransferase. II. A new class of inhibitors of catechol-o-methyltransferase; 3,5-dihydroxy-4-methoxybenzoic acid and related compounds. J Pharmacol Exp Ther 174(1):83–93

    PubMed  CAS  Google Scholar 

  88. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 100(7):4245–4250. doi:10.1073/pnas.0230529100

    PubMed  CAS  Article  Google Scholar 

  89. O’Connor TG, Ben-Shlomo Y, Heron J, Golding J, Adams D, Glover V (2005) Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biol Psychiatry 58(3):211–217. doi:10.1016/j.biopsych.2005.03.032

    PubMed  Article  CAS  Google Scholar 

  90. Obrenovitch TP, Urenjak J (1997) Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 51(1):39–87

    PubMed  CAS  Article  Google Scholar 

  91. Owen D, Matthews SG (2007) Repeated maternal glucocorticoid treatment affects activity and hippocampal NMDA receptor expression in juvenile guinea pigs. J Physiol 578(Pt 1):249–257. doi:10.1113/jphysiol.2006.122887

    PubMed  CAS  Google Scholar 

  92. Pardon MC, Rattray I (2008) What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev 32(6):1103–1120. doi:10.1016/j.neubiorev.2008.03.005

    PubMed  Article  Google Scholar 

  93. Pereira OC, Bernardi MM, Gerardin DC (2006) Could neonatal testosterone replacement prevent alterations induced by prenatal stress in male rats? Life Sci 78(24):2767–2771. doi:10.1016/j.lfs.2005.10.035

    PubMed  CAS  Article  Google Scholar 

  94. Pienaar IS, Kellaway LA, Russell VA, Smith AD, Stein DJ, Zigmond MJ, Daniels WM (2008) Maternal separation exaggerates the toxic effects of 6-hydroxydopamine in rats: implications for neurodegenerative disorders. Stress 11(6):448–456. doi:10.1080/10253890801890721

    PubMed  CAS  Article  Google Scholar 

  95. Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D (1998) D2-Like dopamine autoreceptor activation reduces quantal size in PC12 cells. J Neurosci 18(15):5575–5585

    PubMed  CAS  Google Scholar 

  96. Rodriguez N, Mayer N, Gauna HF (2007) Effects of prenatal stress on male offspring sexual maturity. Biocell 31(1):67–74

    PubMed  CAS  Google Scholar 

  97. Rosen GD, Finklestein S, Stoll AL, Yutzey DA, Denenberg VH (1984) Neurochemical asymmetries in the albino rat’s cortex, striatum, and nucleus accumbens. Life Sci 34(12):1143–1148

    PubMed  CAS  Article  Google Scholar 

  98. Sandman CA, Davis EP, Buss C, Glynn LM (2011) Prenatal programming of human neurological function. Int J Pept 2011:837596. doi:10.1155/2011/837596

    PubMed  Google Scholar 

  99. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 95(7):4013–4018

    PubMed  CAS  Article  Google Scholar 

  100. Semina EV, Reiter RS, Murray JC (1997) Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet 6(12):2109–2116

    PubMed  CAS  Article  Google Scholar 

  101. Shiman R, Akino M, Kaufman S (1971) Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem 246(5):1330–1340

    PubMed  CAS  Google Scholar 

  102. Shono T, Suita S (2003) Disturbed pituitary-testicular axis inhibits testicular descent in the prenatal rat. BJU Int 92(6):641–643

    PubMed  CAS  Article  Google Scholar 

  103. Silvagni A, Barros VG, Mura C, Antonelli MC, Carboni E (2008) Prenatal restraint stress differentially modifies basal and stimulated dopamine and noradrenaline release in the nucleus accumbens shell: an ‘in vivo’ microdialysis study in adolescent and young adult rats. Eur J Neurosci 28(4):744–758. doi:10.1111/j.1460-9568.2008.06364.x

    PubMed  Article  Google Scholar 

  104. Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD (2001) Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 21(9):3126–3134

    PubMed  CAS  Google Scholar 

  105. Smidt MP, Burbach JP (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8(1):21–32

    PubMed  CAS  Article  Google Scholar 

  106. Smidt MP, van Schaick HS, Lanctot C, Tremblay JJ, Cox JJ, van der Kleij AA, Wolterink G, Drouin J, Burbach JP (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94(24):13305–13310

    PubMed  CAS  Article  Google Scholar 

  107. Smidt MP, Smits SM, Burbach JP (2004) Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 318(1):35–43. doi:10.1007/s00441-004-0943-1

    PubMed  CAS  Article  Google Scholar 

  108. Smith AD, Castro SL, Zigmond MJ (2002) Stress-induced Parkinson’s disease: a working hypothesis. Physiol Behav 77(4–5):527–531

    PubMed  CAS  Article  Google Scholar 

  109. Smith LK, Jadavji NM, Colwell KL, Katrina Perehudoff S, Metz GA (2008) Stress accelerates neural degeneration and exaggerates motor symptoms in a rat model of Parkinson’s disease. Eur J Neurosci 27(8):2133–2146. doi:10.1111/j.1460-9568.2008.06177.x

    PubMed  Article  Google Scholar 

  110. Smits SM, Ponnio T, Conneely OM, Burbach JP, Smidt MP (2003) Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 18(7):1731–1738

    PubMed  Article  Google Scholar 

  111. Son GH, Geum D, Chung S, Kim EJ, Jo JH, Kim CM, Lee KH, Kim H, Choi S, Kim HT, Lee CJ, Kim K (2006) Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. J Neurosci 26(12):3309–3318. doi:10.1523/JNEUROSCI.3850-05.2006

    PubMed  CAS  Article  Google Scholar 

  112. Song L, Zheng J, Li H, Jia N, Suo Z, Cai Q, Bai Z, Cheng D, Zhu Z (2009) Prenatal stress causes oxidative damage to mitochondrial DNA in hippocampus of offspring rats. Neurochem Res 34(4):739–745. doi:10.1007/s11064-008-9838-y

    PubMed  CAS  Article  Google Scholar 

  113. Sontag LW (1941) The significance of fetal environmental differences. Am J Obstet Gynecol 42:996–1003

    Google Scholar 

  114. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463

    PubMed  CAS  Article  Google Scholar 

  115. Suchak SK, Baloyianni NV, Perkinton MS, Williams RJ, Meldrum BS, Rattray M (2003) The ‘glial’ glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings. J Neurochem 84(3):522–532

    PubMed  CAS  Article  Google Scholar 

  116. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702

    PubMed  CAS  Article  Google Scholar 

  117. Trifaro JM, Vitale ML, Rodriguez Del Castillo A (1992) Cytoskeleton and molecular mechanisms in neurotransmitter release by neurosecretory cells. Eur J Pharmacol 225(2):83–104

    PubMed  CAS  Article  Google Scholar 

  118. Van den Bergh BR, Mulder EJ, Mennes M, Glover V (2005) Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neurosci Biobehav Rev 29(2):237–258. doi:10.1016/j.neubiorev.2004.10.007

    PubMed  Article  Google Scholar 

  119. Van den Bergh BR, Van Calster B, Smits T, Van Huffel S, Lagae L (2008) Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: a prospective study on the fetal origins of depressed mood. Neuropsychopharmacology 33(3):536–545. doi:10.1038/sj.npp.1301450

    PubMed  Article  Google Scholar 

  120. Van den Heuvel DM, Pasterkamp RJ (2008) Getting connected in the dopamine system. Prog Neurobiol 85(1):75–93. doi:10.1016/j.pneurobio.2008.01.003

    PubMed  Article  CAS  Google Scholar 

  121. van den Munckhof P, Luk KC, Ste-Marie L, Montgomery J, Blanchet PJ, Sadikot AF, Drouin J (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130(11):2535–2542

    PubMed  Article  CAS  Google Scholar 

  122. Wadhwa PD, Sandman CA, Garite TJ (2001) The neurobiology of stress in human pregnancy: implications for prematurity and development of the fetal central nervous system. Prog Brain Res 133:131–142

    PubMed  CAS  Article  Google Scholar 

  123. Wallen A, Perlmann T (2003) Transcriptional control of dopamine neuron development. Ann N Y Acad Sci 991:48–60

    PubMed  CAS  Article  Google Scholar 

  124. Wallen A, Zetterstrom RH, Solomin L, Arvidsson M, Olson L, Perlmann T (1999) Fate of mesencephalic AHD2-expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res 253(2):737–746. doi:10.1006/excr.1999.4691

    PubMed  CAS  Article  Google Scholar 

  125. Ward IL, Weisz J (1984) Differential effects of maternal stress on circulating levels of corticosterone, progesterone, and testosterone in male and female rat fetuses and their mothers. Endocrinology 114(5):1635–1644

    PubMed  CAS  Article  Google Scholar 

  126. Ward OB, Ward IL, Denning JH, Hendricks SE, French JA (2002) Hormonal mechanisms underlying aberrant sexual differentiation in male rats prenatally exposed to alcohol, stress, or both. Arch Sex Behav 31(1):9–16

    PubMed  Article  Google Scholar 

  127. Ward IL, Ward OB, Affuso JD, Long WD 3rd, French JA, Hendricks SE (2003) Fetal testosterone surge: specific modulations induced in male rats by maternal stress and/or alcohol consumption. Horm Behav 43(5):531–539

    PubMed  CAS  Article  Google Scholar 

  128. Weidong L, Shen C, Jankovic J (2009) Etiopathogenesis of Parkinson disease: a new beginning? Neuroscientist 15(1):28–35. doi:10.1177/1073858408319974

    Article  Google Scholar 

  129. Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451

    PubMed  CAS  Article  Google Scholar 

  130. Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32(6):1073–1086. doi:10.1016/j.neubiorev.2008.03.002

    PubMed  CAS  Article  Google Scholar 

  131. Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106(1):306–316

    PubMed  CAS  Article  Google Scholar 

  132. Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5(6):483–494. doi:10.1038/nrn1406

    PubMed  CAS  Article  Google Scholar 

  133. Xu M, Zhang J (2004) Molecular genetic probing of dopamine receptors in drug addiction. Curr Opin Drug Discov Dev 7(5):703–708

    CAS  Google Scholar 

  134. Yang SC, Shieh KR (2007) Gonadal hormones-mediated effects on the stimulation of dopamine turnover in mesolimbic and nigrostriatal systems by cocaine- and amphetamine-regulated transcript (CART) peptide in male rats. Neuropharmacology 53(7):801–809. doi:10.1016/j.neuropharm.2007.08.007

    PubMed  CAS  Article  Google Scholar 

  135. Zetterstrom RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250

    PubMed  CAS  Article  Google Scholar 

  136. Zhu Z, Li X, Chen W, Zhao Y, Li H, Qing C, Jia N, Bai Z, Liu J (2004) Prenatal stress causes gender-dependent neuronal loss and oxidative stress in rat hippocampus. J Neurosci Res 78(6):837–844. doi:10.1002/jnr.20338

    PubMed  CAS  Article  Google Scholar 

  137. Zuena AR, Mairesse J, Casolini P, Cinque C, Alema GS, Morley-Fletcher S, Chiodi V, Spagnoli LG, Gradini R, Catalani A, Nicoletti F, Maccari S (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS One 3(5):2170. doi:10.1371/journal.pone.0002170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Susana Buglione for the excellent bibliographic management.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marta C. Antonelli.

Additional information

María R. Katunar, Ezequiela Adrover and María Eugenia Pallarés contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baier, C.J., Katunar, M.R., Adrover, E. et al. Gestational Restraint Stress and the Developing Dopaminergic System: An Overview. Neurotox Res 22, 16–32 (2012). https://doi.org/10.1007/s12640-011-9305-4

Download citation

Keywords

  • Prenatal stress
  • Restraint
  • Rat brain
  • Limbic system
  • Dopamine