Skip to main content
Log in

Effect of Acute Soman Exposure on GABAA Receptors in Rat Hippocampal Slices and Cultured Hippocampal Neurons

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Exposure of the central nervous system to organophosphorus (OP) nerve agents causes seizures and neuronal cell death. Benzodiazepines are commonly used to treat seizures induced by OPs. However, it is known that soman-induced seizures are particularly resistant to benzodiazepine treatment, as compared with other OPs. This study investigated the effect of soman on γ-aminobutyric acid (GABA) neurotransmission in acute rat hippocampal slices and the surface expression of GABAA receptors in cultured rat hippocampal neurons. Results showed that GABA-mediated inhibitory post synaptic currents (IPSCs) are significantly reduced by soman in a concentration-dependent manner in acute rat hippocampal slices. Furthermore, confocal microscopic and cell-based ELISA assays revealed that soman caused rapid internalization of GABAA receptors in cultured rat hippocampal neurons. The effect of soman on GABAAR endocytosis was not due to inhibition of acetylcholinesterase (AChE) because (1) the acetylcholine muscarinic receptor antagonist atropine did not block soman-induced GABAAR endocytosis; and (2) physostigmine, at concentrations that completely inhibit AChE activity, did not cause GABAAR endocytosis. Moreover, blocking of the N-methyl-d-aspartate (NMDA) receptors by 2-amino-5-phosphonovalerate (APV) had no effect on soman-induced GABAAR endocytosis, suggesting that the soman effect was not secondary to glutamate receptor over activation. Regardless of the exact mechanism, the observation that soman induces rapid GABAAR endocytosis may have significant implications in the development of effective countermeasures against soman-induced seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW, Taghibiglou C, Wang Y, Lu J, Wong TP, Sheng M, Wang YT (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Baille V, Clarke PG, Brochier G, Dorandeu F, Verna JM, Four E, Lallement G, Carpentier P (2005) Soman-induced convulsions: the neuropathology revisited. Toxicology 215:1–24

    Article  PubMed  CAS  Google Scholar 

  • Bajgar J, Fusek J, Kuca K, Bartosova L, Jun D (2007) Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini Rev Med Chem 7:461–466

    Article  PubMed  CAS  Google Scholar 

  • Barnard EA, Darlison MG, Fujita N, Glencorse TA, Levitan ES, Reale V, Schofield PR, Seeburg PH, Squire MD, Stephenson FA (1988) Molecular biology of the GABAA receptor. Adv Exp Med Biol 236:31–45

    PubMed  CAS  Google Scholar 

  • Blair RE, Sombati S, Lawrence DC, McCay BD, DeLorenzo RJ (2004) Epileptogenesis causes acute and chronic increases in GABAA receptor endocytosis that contributes to the induction and maintenance of seizures in the hippocampal culture model of acquired epilepsy. J Pharmacol Exp Ther 310:871–880

    Article  PubMed  CAS  Google Scholar 

  • Brown MJ, Bristow DR (1996) Molecular mechanisms of benzodiazepine-induced down-regulation of GABAA receptor alpha 1 subunit protein in rat cerebellar granule cells. Br J Pharmacol 118:1103–1110

    PubMed  CAS  Google Scholar 

  • Dorandeu F, Carpentier P, Baubichon D, Four E, Bernabe D, Burckhart MF, Lallement G (2005) Efficacy of the ketamine-atropine combination in the delayed treatment of soman-induced status epilepticus. Brain Res 1051:164–175

    Article  PubMed  CAS  Google Scholar 

  • Duysen EG, Li B, Xie W, Schopfer LM, Anderson RS, Broomfield CA, Lockridge O (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 299:528–535

    PubMed  CAS  Google Scholar 

  • Eghbali M, Curmi JP, Birnir B, Gage PW (1997) Hippocampal GABA(A) channel conductance increased by diazepam. Nature 388:71–75

    Article  PubMed  CAS  Google Scholar 

  • Eyer P (2003) The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol Rev 22:165–190

    Article  PubMed  CAS  Google Scholar 

  • Hajek P, Bajgar J, Slizova D, Krs O, Kuca K, Capek L, Fusek J (2009) Different inhibition of acetylcholinesterase in selected parts of the rat brain following intoxication with VX and Russian VX. Drug Chem Toxicol 32:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hallak M, Giacobini E (1986) Relation of brain regional physostigmine concentration to cholinesterase activity and acetylcholine and choline levels in rat. Neurochem Res 11:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Harrison PK, Sheridan RD, Green AC, Scott IR, Tattersall JE (2004) A guinea pig hippocampal slice model of organophosphate-induced seizure activity. J Pharmacol Exp Ther 310:678–686

    Article  PubMed  CAS  Google Scholar 

  • Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343

    Article  PubMed  CAS  Google Scholar 

  • Kneussel M (2002) Dynamic regulation of GABA(A) receptors at synaptic sites. Brain Res Brain Res Rev 39:74–83

    Article  PubMed  CAS  Google Scholar 

  • Kneussel M, Loebrich S (2007) Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol Cell 99:297–309

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Kralic JE, O’Buckley TK, Grobin AC, Morrow AL (2003) Chronic ethanol consumption enhances internalization of alpha1 subunit-containing GABAA receptors in cerebral cortex. J Neurochem 86:700–708

    Article  PubMed  CAS  Google Scholar 

  • Lallement G, Carpentier P, Collet A, Pernot-Marino I, Baubichon D, Blanchet G (1991) Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus. Brain Res 563:234–240

    Article  PubMed  CAS  Google Scholar 

  • Marrs TC (2004) The role of diazepam in the treatment of nerve agent poisoning in a civilian population. Toxicol Rev 23:145–157

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (1989) Acetylcholine potentiates glutamate-induced neurodegeneration in cultured hippocampal neurons. Brain Res 497:402–406

    Article  PubMed  CAS  Google Scholar 

  • McDonough JH Jr, Shih TM (1997) Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 21:559–579

    Article  PubMed  CAS  Google Scholar 

  • McDonough JH, McMonagle JD, Shih TM (2010) Time-dependent reduction in the anticonvulsant effectiveness of diazepam against soman-induced seizures in guinea pigs. Drug Chem Toxicol 33:279–283

    Article  PubMed  CAS  Google Scholar 

  • Moss SJ, Smart TG (2001) Constructing inhibitory synapses. Nat Rev Neurosci 2:240–250

    Article  PubMed  CAS  Google Scholar 

  • Myhrer T, Nguyen NH, Andersen JM, Aas P (2004) Protection against soman-induced seizures in rats: relationship among doses of prophylactics, soman, and adjuncts. Toxicol Appl Pharmacol 196:327–336

    Article  PubMed  CAS  Google Scholar 

  • Newmark J (2004) Therapy for nerve agent poisoning. Arch Neurol 61:649–652

    Article  PubMed  Google Scholar 

  • Newmark J (2007) Nerve agents. Neurologist 13:20–32

    Article  PubMed  Google Scholar 

  • Parker JC, Sarkar D, Quick MW, Lester RA (2003) Interactions of atropine with heterologously expressed and native alpha 3 subunit-containing nicotinic acetylcholine receptors. Br J Pharmacol 138:801–810

    Article  PubMed  CAS  Google Scholar 

  • Ragan CI, McKernan RM, Wafford K, Whiting PJ (1993) gamma-Aminobutyric acid-A (GABA-A) receptor/ion channel complex. Biochem Soc Trans 21(Pt 3):622–626

    PubMed  CAS  Google Scholar 

  • Santos MD, Pereira EF, Aracava Y, Castro NG, Fawcett WP, Randall WR, Albuquerque EX (2003) Low concentrations of pyridostigmine prevent soman-induced inhibition of GABAergic transmission in the central nervous system: involvement of muscarinic receptors. J Pharmacol Exp Ther 304:254–265

    Article  PubMed  CAS  Google Scholar 

  • Sawyer TW, Weiss MT, D’Agostino PA, Provost LR, Hancock JR (1992) Bioassay of organophosphate nerve agents in soil using neuronal tissue cultures. J Appl Toxicol 12:1–6

    Article  PubMed  CAS  Google Scholar 

  • Shih TM, McDonough JH Jr (1997) Neurochemical mechanisms in soman-induced seizures. J Appl Toxicol 17:255–264

    Article  PubMed  CAS  Google Scholar 

  • Shih T, McDonough JH Jr, Koplovitz I (1999) Anticonvulsants for soman-induced seizure activity. J Biomed Sci 6:86–96

    PubMed  CAS  Google Scholar 

  • Sloviter RS, Dempster DW (1985) “Epileptic” brain damage is replicated qualitatively in the rat hippocampus by central injection of glutamate or aspartate but not by GABA or acetylcholine. Brain Res Bull 15:39–60

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ju W, Liu L, Fam S, D’Souza S, Taghibiglou C, Salter M, Wang YT (2004) alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptor (AMPAR) endocytosis is essential for N-methyl-d-aspartate-induced neuronal apoptosis. J Biol Chem 279:41267–41270

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Weiss MT, Yin J, Tenn CC, Nelson PD, Mikler JR (2008) Protective effects of N-methyl-d-aspartate receptor antagonism on VX-induced neuronal cell death in cultured rat cortical neurons. Neurotox Res 13:163–172

    Article  PubMed  CAS  Google Scholar 

  • Weckesser M, Fixmann A, Holschbach M, Muller-Gartner HW (1998) Influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic brain receptors. Nucl Med Biol 25:777–780

    Article  PubMed  CAS  Google Scholar 

  • Xiao MY, Gustafsson B, Niu YP (2006) Metabotropic glutamate receptors in the trafficking of ionotropic glutamate and GABA-A receptors at central synapses. Curr Neuropharmacol 4:77–86

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Liu, L., Weiss, T. et al. Effect of Acute Soman Exposure on GABAA Receptors in Rat Hippocampal Slices and Cultured Hippocampal Neurons. Neurotox Res 20, 343–350 (2011). https://doi.org/10.1007/s12640-011-9248-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9248-9

Keywords

Navigation